设A是复数域C上一个n阶矩阵
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 12:31:26
设A是复数域C上一个n阶矩阵
证明:存在C上n阶可逆矩阵P使得 P^-1AP=r1 a12 .a1n
0 a22 .a2n
.
0 an2 .ann
证明:存在C上n阶可逆矩阵P使得 P^-1AP=r1 a12 .a1n
0 a22 .a2n
.
0 an2 .ann
设p1是A的属于特征值r1的特征向量
将p1扩充为C^n的一组基 p1,p2,...,pn
则 P=(p1,p2,...,pn) 可逆
且 AP=(Ap1,Ap2,...,Apn)=(r1p1,Ap2,...,Apn)
设 APj=∑aijpi,j=2,3,...,n
则 AP=(p1,p2,...,pn)B
B=
r1 a12 .a1n
0 a22 .a2n
.........
0 an2 .ann
所以有 P^-1AP = B.
将p1扩充为C^n的一组基 p1,p2,...,pn
则 P=(p1,p2,...,pn) 可逆
且 AP=(Ap1,Ap2,...,Apn)=(r1p1,Ap2,...,Apn)
设 APj=∑aijpi,j=2,3,...,n
则 AP=(p1,p2,...,pn)B
B=
r1 a12 .a1n
0 a22 .a2n
.........
0 an2 .ann
所以有 P^-1AP = B.
设A是复数域C上一个n阶矩阵
设 A是数域P 上一个N*N 阶矩阵,证明 A与 A^T相似
设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则( )
设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为 r1,矩阵B=AC的秩为r,则
设A是n阶是对称矩阵,并且A^2=A.证明存在正交矩阵C,使
设A=(B C)是n×m矩阵,B是n×s子矩阵
设A是数域F上一个n阶方阵,且A^2=A(A为幂等矩阵)
矩阵题目:设A为m*n矩阵,而B C分别是m阶和n阶可逆矩阵,0为n*m零矩阵 证明A,B,C
4、设A是S*t阶矩阵,B是m*n阶矩阵,如果ABC有意义,则c应是---------阶矩阵
设 A 是阶矩阵x*t 阶矩阵,B 是m×n阶矩阵,如果 AC ‘b有意义,则 C 应是()
设A是复数域上的n阶矩阵,W是n维向量空间的子空间,维数至少为1,且是A的不变子空间.证明在W中有A的