1 x根号(2-lnx)lnxdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:07:19
用换元法:令u=lnx,x=e^u==>dx=e^udu当x=1,u=0:当x=e,u=1==>∫(0~1)e^u/[e^u*√(1-u²)]du=∫(0~1)du/√(1-u²)
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
先求不定积分∫lnx/√xdx=2∫lnxd(√x)(分部积分法)=2√xlnx-2∫√x/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+C再把上下限代入相减即可,这个很简单,因为不好
symsx;y=atan((x^2-1)^(1/2))-log(x)/((x^2-1)^(1/2))y=atan((x^2-1)^(1/2))-log(x)/(x^2-1)^(1/2)>>diff(y
这点我来回答首先只要形如dy/dx=p(x)y+q(x)的都是一阶线性方程下面分析A.y(lny-lnx)=x(dy/dx)先令x≠0化为dy/dx=ylny/x-ylnx/x这不符合上述形式,故不是
(1)∫dx/(1+√x)=∫2√xd(√x)/(1+√x)=2∫[1-1/(1+√x)]d(√x)=2[√x-ln(1+√x)]+C(C是积分常数)(2)∫[(1+lnx)/(xlnx)²
=-1/(xlnx)-∫dx/(x2;lnx)∫dx/(x2;lnx)C(提示:在上式第一个积分应用分部积分,C是积分常数)=-1/(xlnx).
过程挺繁复的,只好逐步化简了.
∫dx/x根号(1+lnx)=∫1/根号(1+lnx)d(1+lnx)=2根号(1+lnx)+c再问:=∫1/根号(1+lnx)d(1+lnx)为什么=2根号(1+lnx)+c再答:∫dx/x根号(1
∫lnx/√xdx=2∫lnxd√x=2lnx√x-2∫1/√xdx=2lnx√x-4√x+C
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
dx^(1/2)=(1/2)x^(-1/2)dx∫x^(-1/2)lnxdx=2∫lnxdx^(1/2)
I=∫(1,e²)dx/(x√(1+lnx))设t=√(1+lnx),t²=1+lnx,x=e^(t²-1),dx=e^(t²-1)*2tdtI=∫(1,e
写得不清楚lny=lnx^3+lnx*ln(x^2+1)-x-x^2ln(x+1)求导得:y'/y=3/x+ln(x^2+1)/x+lnx*(2x)/(x^2+1)-1-2xln(x+1)-x^2/(
采用分部积分了!因为∫[dx/(lnx-x)+(1-x)dx/(x-lnx)^2]=∫dx/(lnx-x)+∫x(1/x-1)dx/(x-lnx)^2=∫dx/(lnx-x)+∫xd(lnx-x)/(
1、令t=lnx则原式=∫lntdt.用分部积分法,取,u=lnt,dv=dt,v=t即可2、取u=e^(2x),dv=sinxdx,v=-cosx.用两次分部积分,然后移项整理即可3、令t=√(x+
∫[1,e^2]dx/[x√(1+lnx)]=∫[1,e^2]dlnx/√(1+lnx)=2√(1+lnx)[1,e^2]=2√3-2
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出