1 x(lnx(1-lnx))dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:25:09
1 x(lnx(1-lnx))dx
不定积分(1-lnx)dx/(x-lnx)^2

x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-

f((1-lnx)/(1+lnx))=xlnx求f(x)

令t=(1-lnx)/(1+lnx)得lnx=(1-t)/(t+1)x=e^[(1-t)/(t+1)]所以f(t)=(1-t)/(t+1)*e^[(1-t)/(t+1)]即f(x)=(1-x)/(1+

limx*[ln(1+x)-lnx]

lim(x→∞)x[ln(1+x)-lnx]=lim(x→∞)x·ln[(1+x)/x]=lim(x→∞)ln[(1+x)/x]^x=lnlim(x→∞)[1/x+1]^x=lne=1.----[原创

∫(1/x) lnx dx上2下1=∫lnx d(lnx)上ln2下0,怎么算

原式=[(-a)+(-6b)]²=(-a)²+2(-a)(-6b)+(-6b)²=a²+12ab+36b²原式=[-1×(a+6b)]²=(

求(1-lnx)dx/(x-lnx)^2的不定积分

1-lnx=(x-lnx)-x(1-1/x)凑微分∫[(1-lnx)/(x-lnx)^2]dx=x/(x-lnx)+C再问:过程能不能详细点再答:(x-lnx)'=1-1/x,∫[(1-lnx)/(x

不定积分[(x*lnx)^(3/2)]*(lnx+1)dx

S[(x*lnx)^(3/2)]*(lnx+1)dx=S[(x*lnx)^(3/2)]*(xlnx)'dx=S[(x*lnx)^(3/2)]*d(xlnx)=1/(1+3/2)*(x*lnx)^(1+

y=(lnx)^x 求导数 答案是(lnx)^x乘以[ln(lnx)+1/lnx]

y=(lnx)^x则lny=xln(lnx)两边求导y'/y=ln(lnx)+x*(1/lnx)*(1/x)即y'/y=ln(lnx)+1/lnx所以y'=y*[ln(lnx)+1/lnx]=(lnx

x→0时,ln(lnx)=lnx ln(ln(1+x)=lnx

x→0时lnx→-∞ln(lnx)无意义∵limln[ln(1+x)]/lnx=lim[1/ln(1+x)*1/(1+x)]/(1/x)=limx/[(1+x)ln(1+x)]=lim1/[ln(1+

∫ln(x+1)-lnx/x(x+1) dx =∫(ln(x+1)-lnx)d(ln(x+1)-lnx) =-1/2(l

当中那个式子有问题,应该等于=-∫(ln(x+1)-lnx)d(ln(x+1)-lnx),有个负号再问:恩我主要想知道最后答案是怎么得出来的再答:有个公式:∫f(x)d[f(x)]=[f(x)]^2/

∫(1-lnx)/(x-lnx)^2dx

x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-

y=[(lnx)^x] * [ln(lnx)+(1/lnx)] .求y的导数

我发图了如是求不定积分就容易了,就是(lnx)^x+C

y=x^(lnx) 求导 为什么不等于y'=lnx*x^(lnx-1)/x

这个是幂指函数,求导不能看作指数函数或幂函数求.这个可以用对数求导法则去算的即lny=lnx·lnx

lnx/(1+x)幂级数展开

lnx在x=0无定义,故不能展开成x的幂级数再问:利用幂级数展开求其从0到1的积分

下列函数在[1,e]上满足拉格朗日中值定理条件的是?A、ln lnx B、lnx C、1/lnx D、ln(2-x)

拉格朗日中值定理的条件是函数在闭区间[a,b]上连续,在开区间(a,b)内可导A、lnlnx定义域为x>1,在x=1无定义,不连续C、1/lnx定义域为x>0且x!=1,在x=1无定义,不连续D、ln

求不定积分∫lnx/x√1+lnx dx

∫lnx/[x√(1+lnx)]dx令t=√(1+lnx),则lnx=t^2-1,x=e^(t^2-1),代入得∫lnx/[x√(1+lnx)]dx=∫lnx/[√(1+lnx)]d(lnx)=∫(t

不定积分1/(lnx-x)+(1-x)/(x-lnx)^2dx

采用分部积分了!因为∫[dx/(lnx-x)+(1-x)dx/(x-lnx)^2]=∫dx/(lnx-x)+∫x(1/x-1)dx/(x-lnx)^2=∫dx/(lnx-x)+∫xd(lnx-x)/(

不定积分 ∫(1+lnx)/(x+lnx)^2dx ,跪谢!

上下同时处以x^2,∫[(1+lnx)/x^2]/[(x+lnx)/x]^2dx=∫1/[(x+lnx)/x]^2d[(x+lnx)/x],这就变成了∫1/ada型,结果为ln|a|+c,将a换掉即可

用分部积分法,如,∫ 1/(x* lnx)dx=∫ 1/lnx d(lnx) = lnx * (1/lnx) -∫ ln

这题不用分部积分啊∫1/(x*lnx)dx=∫1/lnxd(lnx)=ln|lnx|+C

∫x(1+lnx)dx

∫x(1+lnx)dx=∫(1+lnx)d(x²/2)=(1/2)x²(1+lnx)-(1/2)∫x²d(1+lnx)=x²/2+(1/2)x²lnx

求(1-lnx)/(x+lnx)^2的积分 (x+lnx)^2为x+lnx的平方

(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出