对3x^2-x 1求极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:28:22
说下思路吧:1)证明Xn>1,利用Xn+1-1=2(Xn-1)/(Xn+3)〉02)证明Xn单调递减且有下界,从而说明此数列存在极限Xn+1-Xn=(1-Xn^2)/(Xn+3)03)两边取极限假设为
(先假设极限存在,设为x,则x=3+4/x,所以x=4,舍去x=-1)由归纳法知x[n]>0,进而x[n]>3(n>1)|x[n+1]-4|=|4/x[n]-1|=|4-x[n]|/|x[n]|1)所
limx趋近于3(arctan3x)/(2X)=(arctan9)/6(把x=3代入即可)≈13.9433
/>因为lim【x→1】2x+3=2×1+3=5lim【x→1】(x-1)/(2x+3)=(1-1)/(2×1+3)=0所以lim【x→1】(2x+3)/(x-1)=∞答案:∞
记a的算术平方根为Q(抱歉我还只有一级不能插图片,连个公式也插不了)1.当X1>Q时,证有界:设Xn>Q,(显然N=1时成立),则X(n+1)=(Xn+a/Xn)/2>(Q+a/Q)/2=Q(y=x+
lim(x→-8)[√(1-x)-3]/(2+x^1/3)=lim(x→-8)【[√(1-x)-3][√(1-x)+3](4-2x^1/3+x^2/3)】/【(2+x^1/3)(4-2x^1/3)[√
条件即为当x1>x2时,f(x1)>f(x2)此为增函数,当x=1,需有f(1)=3+3a>=0-->a>=-1(3-a)x+4a为增函数需有:3-a>0-->a
lim(x→∞)(1+2/x)^(2x+3)=lim(x→∞)(1+2/x)^[(x/2)*4+3)]=lim(x→∞)[(1+2/x)^(x/2)]^4*lim(x→∞)(1+2/x)^3=e^4
x趋于0时,这是一个0/0型极限,可用洛必达法则处理lim(arctanx-x)/(2x³)=lim[1/(1+x²)-1]/(6x²)=lim[1-(1+x²
根据韦达定理有X1+X2=-b/a=-2/3,X1*X2=c/a=-3/3=-1①x2/x1+x1/x2=(x2²+x1²)/(x1x2)=【(x1+x2)²-2x1x2
方程3x²-4x=-1可化为:3x²-4x+1=0由根与系数的关系,有x1+x2=4/3,x1x2=1/3∴x2/x1+x1/x2=(x1²+x2²)/(x1x
极限不存在要极限存在必须左右极限相等limx->3-x/[(x-3)(x+3)]=-无穷,因为分母是趋向0-,3/0-->-无穷limx->3+x/[(x-3)(x+3)]=+无穷,因为分母是趋向0+
1.就是等同于x处以tanx的极限,因为是等价无穷小,所以就等于1了2.就是先把sin(x1+x2)拆成sinx1cosx2+cosx1sinx2,然后整个绝对值内的就变成了sinx1cosx2+(c
已知x1是方程的解,则2x1²-2x1-5=0===>x1²-x1=5/2=2.5又,x1,x2是方程的两个解,则:x1+x2=1,x1x2=-5/2x1³+3x1
极限等于(1+3X)^1/3X*6X/sinX=e^6X/sinX=e^1/6
lim(x->0)√(x-1)(x-2)=lim(x->0)=2
X趋向于0?x应该趋于正无穷吧
原函数可分为y=loga(u)(1)与u=x^2-ax+3(2)而a/2恰巧为(2)函数的对称轴,并且该函数开口向上,则在(负无穷,a/2]上(2)函数为减函数且f(x)=loga(x^2-ax+3)
这个有以下三种结果:此函数在其取值区间是个递增函数.1、如果x取值趋近于0,则极限是0;2、如果x取值趋近于+∞,则极限是无穷大,即没有极限;3、如果指定取值区间,如(a,b)并指定趋近方向是b方向,