1 tanx积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:38:17
ln(1+tanx)=lngen2+lnsin(x+pai/4)-lncosxlnsin(x+pai/4)在0到pai/4上的积分等于lnsinx在pai/4到pai/2的积分用pai/2减积分的上下
Lety=π/4-xthendy=-dxWhenx=0,y=π/4,whenx=π/4,y=0J=∫(0,π/4)ln(1+tanx)dx=∫(π/4,0)ln[1+tan(π/4-y)]-dy=∫(
∫[0,π/4]ln(1+tanx)dx换元π/4-t=x=-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt==∫[0,π/4]ln[2/(tant+1)]dt=∫[0,π/4]l
注意一个结论:∫[0,π/2]f(sinx)dx=∫[0,π/2]f(cosx)dx(定积分换元法那里的一道例题)则∫[0,π/2]f(sinx)dx=1/2[∫[0,π/2]f(sinx)dx+∫[
题没写清楚的哈
∫(x^2*(sinx)^3+tanx-1)dx=-j/2∫x2*(ej3x-e-j3x)dx+∫(sinx/cosx)dx+x又∫x2*ej3xdx=-x2*ej3x/(3j)+2/(3j)*∫x*
=∫sinx/(1+(tanx)^2)dx(-π/4
这个好像书上都有解得答案哇,用的是参变量积分,这里就不介绍书上的方法了还可以用貌似对称的方法利用∫[0,a]f(x)dx=(1/2){∫[0,a]f(x)dx+∫[0,a]f(a-x)dx}上述公式你
∫dx/(sinxcosx)=∫(1/cos²x)/(sinx/cosx)dx,上下除以cos²x=∫sec²x/tanxdx=∫d(tanx)/tanx,(tanx)'
ln(1+tanx)tanx=sinx/cosx=ln(1+sinx/cosx)通分=ln(cosx+sinx)/cosxlna/b=lna-lnb=ln(cosx+sinx)-lncosx=ln[√
再答:���벻����������Ŀֱ��չ�����Ϳ����ˡ�
如图所示,仅供参考,
在百度里不好打公式,我说下方法好了,1和tanX是可以分开的(1是常数),不定积分就得x-Ln|cosx|,你再定积分就好了,别说不会定积分,那我也没办法了.键议你看看基本公式,怀疑你有些公式不记得了
原式=∫(sinx)^2/(cosx)^2dx=∫(sinx)^2(secx)^2dx=∫(sinx)^2dtanx=(sinx)^2tanx-∫tanxd(sinx)^2=(1-cosx^2)tan
如图:
=(sinx/cosx+cosx/sinx)cos²x=[(sin²x+cos²x)/(sinxcosx)]*cos²x=[1/(sinxcosx)]*cos&
设f(x)=xsecx(tanx)^4,因为在f(-x)=-f(x)(x∈R),即f(x)为奇函数,所以在任意的-a~a上积分,结果都是0故从-1→1积分,∫[xsecx(tanx)^4]dx=0注:
∫e^(2x)(tanx+1)^2dx=∫e^2x(tanx^2+1)dx+∫e^2x*2tanxdx=∫e^2xdtanx+∫tanxde^2x=e^(2x)tanx-∫tanxde^2x+∫tan