1 n收敛么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:52:15
1 n收敛么
判定级数(∞∑n-1)(-1)^n-1/ln(n+1)是否收敛?如果收敛,说明是条件收敛还是绝对收敛

首先看∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞)n/ln(1+n)=lim(n→∞)1/(1/(n+1))=lim(n→∞)n+1=∞而∑1/n发散,所以

级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛

俺来回答一下,马上拍照再答:

级数收敛证明(-1)^n/n这个级数怎么证明收敛?

设an=1/n.∵(1)an=1/n>1/(n+1)=an+1,(2)an-->0(n-->∞),∴根据莱布尼茨判别法知,交错级数∑(-1)^n/n收敛.

级数sin n/(n+1)收敛还是发散,如果收敛,是绝对收敛还是条件收敛,为什么?

收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c

举例 收敛今天同学问我,一个数列,本身不收敛,但加上绝对值就收敛了,(-1)^n *1/n 这个是不是都收敛?

(-1)^n*1/n收敛1/n不收敛这个要用莱布尼茨判定法交错级数∑(-1)^(n-1)an当数列an递减且通项an极限为0时就收敛如果|an|收敛则交错级数绝对收敛若|an|发散则条件收敛再问:这个

级数(-1)^n / n 为啥收敛 ?怎么证明?

交错级数,用莱布尼兹判敛法再问:莱布尼茨的的前提条件之一不是前项大于后项吗这里怎么满足。。。求教再答:那里面所说的是把(-1)^n去掉之后剩下的正项,在这里就是1/n

证明级数(-1)^n/n是收敛的

设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛

判断幂级数无穷∑n=1 【((-3)^n+5^n)/n】*X^n的收敛半径和收敛区域

设an=【((-3)^n+5^n)/n】则收敛半径=an/an+1=1/5x=1/5同1/n比较发散x=-1/5莱布尼茨判别发收敛

判断级数∑(n从1到∞)(-1)^n/根号(n(n+1))是否收敛 若收敛是条件收敛还是绝对收敛

条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑

1.求幂级数∑(∞,n=1) nx^(n+1)的收敛半径、收敛区间.

∑nx^(n+1),a(n)=n,a(n+1)/a(n)->1=>收敛半径R=1,收敛区间(-1,1)看区间端点:x=±1,∑n与∑n(-1)^(n+1)通项极限不存在,故发散=》收敛域(-1,1)再

(1-cos派/n)为什么收敛

cos派等于负一,该式等于(1+1/n),n趋向无穷时,该式极限为1.证明可以用单调有界定理,上下界分别是2跟1,加上单调递减,结论得证.

为什么-1/n为什么是收敛的?

对于任意ε>0令N=[1/ε]+1>1/ε则对于任意n>N|-1/n|=|1/n|再问:您好,谢谢你!是不是这样的解法适用于所有的负值的式子呢?还有就是这样的解法在哪里有?我想进一步了解!谢谢您!再答

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/

判断级数∑(n=1)(-1)^n/(n+根号n)是绝对收敛,条件收敛还是发散

{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛