6x^2-3 2z^4 x^2z^4 3是一个6次4项式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:52:39
(1)2x+3y-4z=-5(2)x+y+z=6(两边同时×33x+3y+3z=18(与(1)相减得(5)(3)x-y+3z=10(与(2)相加得(4))(4)2x+4z=16(5)x+7z=23(两
(5x+3y+2z)+(4x+6y+7z)=2011+20129(x+y+z)=4023x+y+z=447
假设x+y+zz=3x+2y-42x+2z=6+y===>y=2x+2z-6=2x-6+6x+4y-8=8x-14+4y===>3y=14-8xz=3x+2y-4===>3z=9x+6y-12=9x-
{3x+y-z=4①,2x-y+3z=12②,x+y+z=6③}①+②得5x+2z=16④,②+③得3x+4z=18⑤④×2—⑤得7x=14,x=2所以z=3、y=1所以方程组的解为x=2、y=1、z
4x-y+3z=0(1)2x+y+6z=0(2)()+(2)6x+9z=06x=-9zz/x=-2/3(1)*2-(2)8x-2y-2x-y=06x-3y=06x=3yx/y=1/2z/x=-2/3x
设:x/4=y/5=z/6=k则有:x=4k,y=5k,z=6k(x+y+z)/(3x-2y+z)=(4k+5k+6k)/(12k-10k+6k)=15k/8k=15/8
2x-y+2z=-17①3x+y-3z=-4②x+y+z=6③③*2:2x+2y+2z=12④④-①:3y=29y=29/3带入③:x+z=-11/3⑤带入②:3x-3z=-41/3即x-z=-41/
因为x:y:z=3:4:5所以设x=3k,y=4k,z=5k(k≠0)(1)z/(x+y)=5k/(3k+4k)=5k/7k=5/7(2)x+y+z=63k+4k+5k=612k=6k=1/2x=3k
1\a4x+9y=12,b3y-2z=1,c2x+6z=3a-3b4x+6z=9与C联立x=3z=-1/2带入ay=0x=3y=0z=-1/22\a3x-y+2z=3,b2x+y-3z=11,cx+y
1.x+y=16①y+z=12②z+x=10③①-②x-z=4④③+④2x=14x=7⑤⑤代入①y=9⑥⑥代入②z=3x=7,y=9,z=3(2)3x-y+z=4①2x+3y-z=12②x+y+z=6
X+Y+Z=4,2*(X+Y+Z)+X=10,可以解出X=2.套入第二个和第一个.4+3Y-Z=66+2Y+2Z=10那么3Y=Z+2,2Y+2Z=4.Y=1,X=1X+Y+Z=4=2+1=12x+3
x+2y-7z=a3x-4y+6z=b4x-2y-z=c则a+b=ca^3+b^-c^3=(a+b)^-3a^2b-3ab^2-c^3=-3ab(a+b)=-3abc=-3(x+2y-7z)(3x-4
x+y+z=41式x+y+2z=52式3x+y-z=63式2-1式z=13-2式2x-3z=14式z=1代入4式x=2再代入1式y=1∴x=2,y=1,z=1请点击下面的【选为满意回答】按钮,再问:�
因为|x-z-2|》=0,3x-6y-7)^2》=0,|3y+3z-4|》=0且|x-z-2|+(3x-6y-7)^2+|3y+3z-4|=0所以三个式子都等于0,得到一个方程组,解方程组得x=3,y
已知,2x+5y+4z=6,3x+y-7z=-4,可得:2(2x+5y+4z)+3(3x+y-7z)=2*6+3*(-4)=0;即有:13(x+y-z)=0,所以,x+y-z=0.
/>x/4=y/5=z/6=t分别用t表示x,y,z然后带入到要求的式子x+y+z/3x-2y+z中最终解得结果
解法1:2x+5y+4z=0式①3x+y-7z=0式②x+y-z=?式③式①=0,式②=0,所以式①-式③=式②-式③即:2x+5y+4z-x-y+z=3x+y-7z-x-y+zx+4y+5z=2x+
2x+y+z=2(1)x+2y+z=4(2)x+y+2z=6(3)(1)+(2)+(3)4x+4y+4z=12x+y+z=3(4)(1)-(4),x=-1(2)-(4),y=1(3)-(4),z=3
x=2y=3z=13x-y+z=42x+3y-z=12消z得5x+2y=162x+3y-z=12x+y+z=6消z得3x+4y=185x+2y=163x+4y=18合并得x=2y=3代入x+y+z=6
x^4(y-z)+y^4(z-x)+z^4(x-y)=xy(x^3-y^3)+yz(y^3-z^3)+zx(z^3-x^3)=xy(x^3-y^3)+yz(y^3-z^3)-zx[(x^3-y^3)+