如果四边形内接于⊙O,E为cd延长上的一点诺角b=110°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:59:24
证明:根据定理“三角形任一外角等于不相邻两个内角的和”可得:∠AEF=∠B+∠BPE∠DFE=∠PDF+∠APE因为EP是∠APB的平分线所以∠APE=∠BPE因为∠B=∠PDF(圆内接四边形外角等于
1、证明:连接OA∵AE⊥CD∴∠DAE+∠EDA=90∵DA平分∠BDE∴∠BDA=∠EDA∵OA=OD∴∠OAD=∠BDA∴∠OAD=∠EDA∴∠OAD+∠DAE=90∴∠OAE=90∴AE是圆O
不用相似三角形的解法:过A作AF⊥BC交BC于F,连接AC∵四边形ABCD内接于圆O,BD是圆O的直径∴∠BAD=∠BCD=90°∵AE⊥CD,AF⊥BC∴四边形AFCE是矩形,CF=AE=2∵DA平
很简单因为DA评分∠BDE,所以∠BDA=∠EDA因为OD=OA,所以∠OAD=∠ODA所以∠OAD==∠EDA所以OA平行于ED因为AE垂直CD所以AE垂直OA所以AE是圆O的切线
答:第二问:延长BA,CE,交于一点P因为DA=DA,角DAB=角DAP=90°,角ADB=角ADE(角平分线)所以三角形ADB和三角形ADP全等.所以AP=AB,即PB=2PA又BD是直径,所以角B
取CD的中点F,则OF=AE=2,且OF⊥CD,CF=3/2所以OC^2=2^2+(3/2)^2=25/4,OC=5/2所以直径等于5.
你题没发完再问:再问:第2题再答:第一问可以求出90度第二问cd=ad圆里面两个都是直角三角行全等睡觉了拿手机在玩帮你看的没笔希望你弄得懂再问:恩,谢谢了
解题思路:本题目主要考查圆内接四边形以及三角形相似的判定和性质。、解题过程:
角CAB=角cdb,e为AC中点,pe=ae,角EAP=角EPA,角DPF+角PDF=EPC+CAP=EPC+EPA=90度所以pfd=90度,答案1正确作辅助线连接CO交圆于G,连接AG,DG,角C
二)6个一)△ABM∽△ADC∠BAM=∠CDMAB/DC=AM/DC又因为E、F分别为AB、CD的中点所以AE/DF=AM/DM所以△AEM∽△DFM∠AEM=∠DFM又因为E、F分别为AB、CD的
已知AC⊥BD,则∠CAD+∠ADB=90°,得∠COD+∠AOB=2∠CAD+2∠ADB=180°.作OF⊥AB垂足为F,连接OB、OC,则∠COE+∠BOF=1/2∠COD+1/2∠AOB=90°
证明:(1)∵AB∥CD且AE⊥CD,∴AB⊥AE,∴AE是⊙O的切线;(2)连接AC,根据切割线定理:AE2=ED•EC,设DE=x,则22=x(x+3),解得:x1=1,x2=-4(舍去),即:D
连接AC,BD,AD是圆O的直径,所以∠ACD=∠ABD=90度,∠ACE=∠EBD=90度,C是弧BD的中点,圆周角∠CAD=∠CAB=∠CDB=∠CBD,∠ADC=∠ACD-∠CAD=90度-∠C
(1)已知,角ADB=角ADE又角AED=角BAD=90度所以,角EAD=角ABD故AE是圆心O的切线(2)角DBC=30度所以角BDC=60度所以角ADB=角ADE=60度三角形AOD为等边三角形A
证明:(1)连接OA∵AE垂直于CD,垂足为E,DA平分角BDE∴∠ADB=∠ADE∠EAD+∠ADE=90°又∵OA=OB∴∠OAD=∠ADB∵∠ADB=∠ADE∠OAD=∠ADB∠EAD+∠ADE
连结AC,OB,且交于点K∵AB=BC,AO=CO,∴AC⊥BO,∴AK2+BK2=AB2=1,AK2+OK2=AO2=4,BK+KO=BO=2,解得:OK=74,∵AC⊥BO,∠ACD=90°,∴O
连结AC,∵EA圆O于A,∴∠EAB=∠ACB,∵AB=AD,∴∠ACD=∠ACB,AB=AD,∠EAB=∠ACD,又四边形ABCD内接于圆O,∴∠ABE=∠D,△ABE∽△CDA,∴ABCD=BED
∠GFC=∠FEC+∠FCE,∠DGF=∠DAE+∠GEA,(三角形外角等于两不相邻内角之和)∠FEC=∠GEA,(EF平分∠AED)∠FCE=∠DAE,(圆内接四边形外角等于内对角)∠GFC=∠DG
AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线