如果两个矩阵AB满足:AB=0那么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 17:14:26
如果两个矩阵AB满足:AB=0那么
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.

设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-

两个矩阵相乘等于零矩阵,AB=O.如果A可逆,是否B=O?

B=O.显然,方程左右同时左乘A的逆,不就得出结论了嘛.顺便BS一下不看题就乱回答的人.

两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵吗?

两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵.因为A为可逆矩阵,所以A^(-1)存在,两边同乘以A^(-1)A^(-1)AB=A^(-1)OB=O再问:为什么不能找到一个非零矩阵与A

线性代数:设A,B是满足AB=0的任意两个非零矩阵,则必有?

你这样想AB=0如果用矩阵方程的形式来写是什么样的呢应该是A的每一行乘以B的每一列等于0那么B的每一列就是AX=0的解而齐次方程的解系应该都是线性无关的所以B的列向量必然线性无关同理A的行向量也是线性

一道线代矩阵基础题设两个非零矩阵A,B,满足AB=0,则必有:A的列向量组线性相关.麻烦解释下.

设A是k*m矩阵B是m*n矩阵则根据秩的不等式:r(AB)>=r(A)+r(B)-m由于AB=0,所以r(AB)=0换言之:r(A)+r(B)=1那么r(A)只能严格小于m了.A有m列,但r(A)

n阶矩阵AB满足A+2B=AB证明AB=BA

证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.

已知矩阵A,矩阵B满足AB=BA,求矩阵B

碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor

设非零矩阵A是m*s矩阵,B是s*n矩阵满足AB=0,则R(A)

不对.反例:A:ab00cd00B:00001234A:2×4矩阵,a,b,c,d任取.B:4×2矩阵,R(B)=2AB=0

若s×n矩阵A和n×s矩阵B满足AB=0,则秩(A)+秩(B)≤n?

也是对的,看一下Sylvester不等式

线性代数矩阵证明若方阵A、B满足AB+BA=E,且A^2=0,求证(AB)^2=AB

(AB)^2-AB=ABAB-AB=A(BA-E)B=A(BA-AB-BA)B=-A^2B^2=0SO:(AB)^2=AB

设A,B为满足AB=0的任意两个非零矩阵,则必有(  )

方法一:设A为m×n矩阵,B 为n×s矩阵,则由AB=O知:r(A)+r(B)≤n,又A,B为非零矩阵,则:必有rank(A)>0,rank(B)>0,可见:rank(A)<n,rank(B

一个线代问题如果一直3阶矩阵A、B,满足AB=B,是不是可以推出来A可逆呢?已知B为非零矩阵

AB=B(A-E)B=0A=E或者B是0阵A=E,那么A可逆如果B是0阵,那么A可逆与否都无关了再问:亲(A-E)B=0无法判断A=E或者B是0阵吧已知B为非零矩阵忘写了再答:其实我们可以这么假设,假

如果有AB两个矩阵,A*A=B*B,那么A=B对吗

不是的.A*A=B*B只能说明|A|=|B|,不能说明A=B

两个非零矩阵A ,B,如果AB=0,是否能推出A或B的行列式为零

可以.但A,B必须是同阶方阵若不是同阶方阵,则不行

若n阶矩阵A,B满足条件AB-A+2E=0,则矩阵AB-BA+2A的秩为?

因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.

已经矩阵A=1 0/2 1,求,满足AB=BA的所有矩阵

设B=abcd由AB=BA得[a,b][a+2b,b][2a+c,2b+d]=[c+2d,d]所以有a=a+2b2a+c=c+2d2b+d=d解得:b=0,a=d所以,满足AB=BA的矩阵为:a0ca

设AB是两个反对称矩阵,证明AB是对称矩阵充要条件是AB=BA

AB是对称矩阵<=>(AB)'=AB<=>B'A'=AB<=>BA=AB即AB可交换再问:AB是反对称矩阵呢!!!

为什么矩阵A,B满足AB=0,且|A|≠0时必有B=0?

det(A)≠0意味着A非奇异,故可逆.用A^(-1)左乘AB=0两边可得B=0.

设三阶矩阵A(1,0,0,0,4,0,0 0 2),矩阵B满足AB=A+B,求矩阵B.

AB=A+B,所以:(A-E)B=A,E为单位矩阵(A-E)=(0,0,0,0,3,0,0,0,1)逆矩阵不存在,本题有错误