如果A可逆,则都可逆,而且:
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:29:55
因为A可逆,所以有A^-1(AB)A=BA所以ABBA(相似)
对的.且有(AB)^-1=B^-1A^-1(A^2)^-1=(A^-1)^2
A可逆,∴存在B使得AB=BA=I,(AB)'=B'A'=(BA)'=A'B'=I'=I,∴B'为A'的逆矩阵.
对的人家说不对的原因是:矩阵A存在相似对角阵的充要条件是:如果A是n阶方阵,它必须有n个线性无关的特征向量.至于如何看A是否存在相似矩阵,只须求出其特征值和特征向量即可看出,公式为AX=λX,其中X为
对……理由如下:1、楼上的理由:A为可逆矩阵,代表满秩,肯定不是零矩阵2、A为可逆矩阵,则A的行列式不为0,故不可能是零阵
任何可逆矩阵都可以化成正交矩阵吗?--看你所说的“化成”指什么了.如果是指相似变换,结论是一般不可以.因为相似变换不改变特征根,而正交矩阵的特征根的绝对值都是1.但一般矩阵的特征值可以为任意值.如果矩
【反证法】假设A不可逆,则|A|=0所A·A*=|A|·E=0因A*逆,等式两边右乘A*的逆,得A=A·A*·A*的逆=A·A*·A*的逆=0·A*的逆=0即有A=0进而有A*=0(根据伴随矩阵的意义
一定是这样的,因为A可逆,那么A的行列式一定不等于0,而det(cA)=c^ndet(A),所以-A的行列式等于-1的n次乘以detA,所以-A的行列式不等于0!
不一定.反例:A可逆,B=-A可逆,但A+B=0不可逆.
AB*B^(-1)*A^(-1)=AEA^(-1)=AA^(-1)=E(E为单位矩阵)从而AB为可逆矩阵,逆矩阵为B^(-1)*A^(-1)
是矩阵么?还是~矩阵的话:A可逆,所以|A|≠0,由AA*=|A|E得|A*|≠0,所以A*可逆再问:我给您多加15财富,麻烦给我详细解释一下“由AA*=|A|E得|A*|≠0”为什么?再答:因为AA
A*=|A|A^-1|A*|=||A|A^-1|=|A|^n乘以|A^-1|=|A|^(n-1)因为A可逆,所以A的行列式不等于零所以|A|^(n-1)不等于0所以|A*|不等于0所以伴随矩阵可逆
n阶方阵A可逆,|A|≠0AA*=|A|EA*=|A|A^(-1)|A*|=|A|^(n-1)≠0A*可逆
用性质经济数学团队帮你解答.
因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能
证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/
一个矩阵可逆的话那么该矩阵的行列式的值不等于0现在AB不可逆,则AB的行列式=0,即A的行列式*B的行列式=0,所以A或B至少有一个的行列式为0,而不是都=0
答案是DA:没有说A,B是方阵加上A,B是方阵就对了B:取特例不妨令A=-B,则A+B=0,不可逆C:取特例不妨令A=diag(1,0),则B=diag(0,1),则A+B=I,可逆(diag,对角阵