如果,BP, CP分别是,角c bd于角BCE的平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:06:50
因为,∠BCE=∠A+∠ABC,∠CBD=∠A+∠ACB所以,∠2=1/2*(∠A+∠ABC),∠1=1/2*(∠A+∠ACB)所以,∠BPC=180-(∠1+∠2)=180-1/2*(∠A+∠ACB
∠BPC>∠A证:连接AD,并延长AD交BC与E∵三角形ADC中,∠EDC是外角∴∠EDC>∠DAC(三角形的一个外角大于不相邻的任意一个内角)∵三角形ADB中,∠EDB是外角∴∠EDB>∠DAB(三
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
∵∠1=0.5∠DBC=0.5(180°-∠ABC),∠2=0.5∠ECB=0.5(180°-∠ACB)∴∠BPC=180°-(∠1+∠2)=180°-【0.5(180°-∠ABC)+0.5(180°
∠BPC=90°-½∠A再问:请说出过程再答:请先采纳后追问再问:先说了,我看了,再再答:这个特简单,不采纳也没关系,你自己看吧再问:好吧再答:采纳后我会给你详细过程再答:采纳后我会给你详细
根据内角平分线可推得∠BDC=90°+1/2∠A当∠A=30°时∠BDC=90°+15°=105°根据内外角平分线可推得∠BDC=90°+1/2∠A∠BPC=90°-1/2∠A两式相加得∠BDC+∠B
设△ABC中,∠ABC和∠ACB的内角平分线交于D,∠ABC的内角平分线与∠ACB的外角平分线交于E,∠ABC的外角平分线与∠ACB的外角平分线交于P,则有下列关系成立:①∠BDC=90+∠A/2②∠
证明:∵∠A+∠D+∠ABC+∠BCD=360∴∠ABC+∠BCD=360-(∠A+∠D)∵BP平分∠ABC,CP平分∠BCD∴∠CBP=∠ABC/2,∠BCP=∠BCD/2∴∠BPC=180-(∠C
角的负号不写了A+ABP=P+ACPA=P+ACP-ABPA=P+(1/2)(ACD-ABC)A=P+(1/2)A1/2A=PA=54度
过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC
证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC
∵BP、CP分别是∠CBD和∠BCE的角平分线∴∠CBP=1/2∠CBD,∠BCP=1/2∠BCE∴∠CBP+∠BCP=1/2(∠CBD+∠BCE)=1/2(180°-∠ABC+180°-∠ACB)=
不是连接AP因为BP平分
过P作PF⊥AC,交AC于F过P作PE⊥BC,交BC延长线于E过P作PG⊥AB,交AB延长线于G因为AP平分∠GAC,所以PG=PF(角平分线上的点到角两边距离相等)因为CP平分∠ACE所以PF=PE
E,F是什么东东?再问:再答:俩问的结果都是180°哈以为∠PBD=∠PBC+∠DBC=1/2∠EBC+1/2∠ABC=1/2(∠EBC+∠ABC)=90°同理∠PCD=∠PBC+∠DBC=90°所以
证明:需要做辅助线,三条垂线,第一,过P向AC作垂线垂足为D,过P向AB坐垂线垂足为E,过P向BC做垂线垂足为F.之后根据外角平分线,角ECP和角BCP相等,加上直角和公共边,便可说明三角形ECP和F
∠BPC=90-∠A/2∵∠DBC=180-∠ABC,BP平分∠CBD∴∠PBC=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2∵∠BCE=180-∠ACB,CP平分∠BCE∴∠PCB=∠
∵BP、CP是∠ABC和∠ACB的角平分线,∴∠PBC=1/2∠ABC,∠PCB=1/2∠ACB,∵∠ABC+∠ACB=180°-∠A,∠BPC=180°-∠PBC-∠PCB=180°-1/2(∠AB