如图角mon等于30度,点A.B分别在射线OM,ON上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 00:56:18
如图角mon等于30度,点A.B分别在射线OM,ON上
已知角aob比角boc等于3比2,om平分角aoc,on平分角boc,角mon等于30度,求角aoc的度数.

该题有两种情况1:当A,C在点B的两侧时角COM=1/2角AOC角CON=1/2角BOC所以:角MON=1/2(角AOC-角BOC)=1/2角AOB=30度所以:角AOB=60度,角BOC=40度所以

如图,已知∠MON及两点A.B,求做一点P,使PA=PB,并使点P到∠MON两边的距离相等

先做出AB的中垂线再做出∠MON的中垂线两条直线的交点即为P点

date:mon,30

日期:星期一,八月三十日

角MON=60度,点A,B为射线OM,ON为射线OM,ON上的动点(点A,B不与点O重合)在角MON的内部、三角形AOB

解1、过点P作PQ⊥AB于Q∵∠APB=120°,AP=BP∴∠PAQ=(180°-120°)÷2=30°Rt△AQP中,PQ=AP×sin30°=4×½=2证明2过点P作PS⊥OM于S,P

已知角MON=90度 点A B分别在射线OM/ON上移动,∠OAB的角平分线与∠OBA的外角平分线所在的直线交于点C,

∵∠ABN=∠BAO+90º∴∠CBO=1/2∠ABN=1/2∠BAO+45º∠ABC=1/2∠BAO+45º+∠ABO∠ACB=180º-∠ABC-1/2∠B

已知∠MON=60度,射线OT是∠MON的平分钱,点P是射线

解题思路:本题主要考查了全等三角形的判定,相似三角形的性质,以及三角函数,正确作辅助线,转化为直角三角形的计算,以及正确进行分类是解题的关键.解题过程:

作∠MON角平分线OT,OT上一点P,作射线PA交OM于点A,PA绕P点作逆时针旋转交ON于点B,使得总有∠MON+∠A

 证明:两种情况(1)如果:OA=OB,则显然△OPA≌△OPB,结论PA=PB成立【这种情况不要讲了吧】 (2)如果:OA≠OB,不防设OB>OA在OB上取一点C,使OC=

已知点D在角MON的平分线上,在OM,ON上分别取A,B两点,且使OA等于OB,连接DB,DA,P是OD上一点,PE垂直

证明:∵D在∠MON的平分线上∴∠AOD=∠BOD∵OA=OB,OD=OD∴△OAD≌△OBD∴∠ADO=∠BDO∵PE⊥BD于E,PF⊥AD于F.∴PE=PF(角平分线上的点,到角两边的距离相等)

英文缩写加点表示什么如Mon.a.m.U.S.ph.d Ms.这些点表示什么

第一个Monday星期一的缩写第二个antemeridiem源自拉丁文上午的意思第三个UnitedStates美国的缩写第四个doctorofphilosophy博士的缩写第五个女士的意思

如图,∠MON=90&ord如图,∠MON=90º,在∠MON的内部有一个正方形AOCD,点A、C分别在射线O

.(1)证明:∵正方形AOCD和正方形AB1C1D1∴AO=AD,AB1=AD1∠B1AD1=∠OAD=∠AOC=90°∴∠OAB1+∠B1AD=∠DAD1+∠B1AD=90°∴∠OAB1=∠DAD1

:如图,∠MON=60°,点A、B分别在射线OM、ON上移动,

在BC反向延长线上取点DAC平分∠OAB,所以∠CAB=∠OAB/2,BD平分∠ABN,所以∠ABD=∠ABN/2∠ABN=180-∠OBA,因此∠ABD=90-∠OBA/2因为∠ABD为△ABC外角

已知如图角MON=90度,BE是角ABN平分线,BE的反向延长线与角OAB的平分线相交于点C,当点A.B分别在射线OM.

∵AC平分∠OAB∴∠BAC=∠OAB/2∵∠MON=90∴∠ABN=∠MON+∠OAB=90+∠OAB∵BE平分∠ABN∴∠ABE=∠ABN/2=(90+∠OAB)/2=45+∠OAB/2∵∠ABE

角MON等于90度,点AB分别是射线OM,ON上的动点,BE平分角NBA,BE的反向延长线

∵AC平分∠OAB∴∠BAC=∠OAB/2∵∠MON=90∴∠ABN=∠MON+∠OAB=90+∠OAB∵BE平分∠ABN∴∠ABE=∠ABN/2=(90+∠OAB)/2=45+∠OAB/2∵∠ABE

一 已知角AOB等于90度 角BOC等于30度 OM平分角AOC ON平分角BOC 求角MON的度数

/>1、∵∠AOB=90,∠BOC=30∴∠AOC=∠AOB+∠BOC=90+30=120∵OM平分∠AOC∴∠COM=∠AOC/2=120/2=60∵ON平分∠BOC∴∠CON=∠BOC/2∴∠MO

如图 如图,已知∠MON=90°,点A,B分别在射线OM,ON上移动,

∠C=∠DBC-∠BAC=1/2(∠DBO-∠BAO)=1/2(180°-∠OBA-∠BAO)=1/2(180°-90°)=45°所以大小不变再问:为什么是=1/2(∠DBO-∠BAO)再答:DC,A

如图,角MON=90度,在角MON的内部有一个正方形ABCD,点A、C分别在射线OM、ON上,点B1是ON上的任意一点,

题目中有一些字母不对应,应当是下图.∠C1CN=45°. 证明:在OA上截取OE=OB1,连结B1E,∵正方形AOCD,OA=OC,∠O=90°,∴AE=B1C,∠OEB1=45°,∠OAB

角MON=90度,矩形ABCD的顶点A,B分别在边OM,ON上,当点BD在边ON上运动时,点A随之在OM上运动,矩形AB

分析:取AB的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、D、E三点共线时,点D到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半

如图:∠MON=60°,点A,B为射线OM,ON上动点(点A,B不与点O重合),且AB= ,在∠MON的内部,△AOB外

思路:先求AP,再证点P在∠MON的平分线上,然后再通过直角三角形求OP      (3)连接OP,在Rf△OPS和Ra△APS中∴∠AOP