如图矩形ABCD内接于直径为4的半圆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:56:42
作OM⊥BC于M,连接OE,则ME=MF=12EF,∵AD=12,∴OE=6,在矩形ABCD中,OM⊥BC,∴OM=AB=4,∵在△OEM中,∠OME=90°,ME=OE2-OM2=62-42=25,
连接BD,∵AB为⊙O的直径,直线MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故答案为:135°.
答:第二问:延长BA,CE,交于一点P因为DA=DA,角DAB=角DAP=90°,角ADB=角ADE(角平分线)所以三角形ADB和三角形ADP全等.所以AP=AB,即PB=2PA又BD是直径,所以角B
取CD的中点F,则OF=AE=2,且OF⊥CD,CF=3/2所以OC^2=2^2+(3/2)^2=25/4,OC=5/2所以直径等于5.
(1)认同,连接EF连接DG,由翻折知EG=EA,∠EAB=∠EGB=90°∵E为AD中点∴EG=ED∴△EGF≌△EDF∴DF=GF(2)由翻折知∠AEB=∠GEB,∠ABE=∠GBE由(1)知△E
你题没发完再问:再问:第2题再答:第一问可以求出90度第二问cd=ad圆里面两个都是直角三角行全等睡觉了拿手机在玩帮你看的没笔希望你弄得懂再问:恩,谢谢了
(1)证明:因为BE为圆的切线,所以∠ABE=∠ACB,所以Rt△EAB∽Rt△BAC,所以AB/AE=BC/AB,所以AB的平方=AE乘BC(2)由勾股定理得:AC=√89由(1)知AB/AE=BC
设角AOD为凸,AD=Rsin凸,CD=2Rcos凸S=AD*CD=Rsin凸 * 2Rcos凸∵sin(2凸)=2sin凸*cos凸所以S=R²sin(2凸)当
因为A,B,C,D四点共圆且矩形的对角线相等并且互相平分,即OA=OB=OC=OD,无论怎么绕着O点旋转,结果仍然四点在圆上且为矩形,形状大小都不变.因为0A=0B=AB=4,由勾股定理求出AD=BC
设矩形垂直直径的边长为x,由勾股定理,另一边为2√(2^2-x^2),S=2x√(4-x^2)=2√(-x^4+4x^2),=2√[-(x^2-2)^2+4]当x=√2时,S有最大值4
1、∵四边形ABCD是矩形∴AD=BCAB=CD∠D=∠C=∠DAB=∠ABC=90°∴△ADE和△BEC是Rt△连接EF,AE是直径∴∠D=∠AFE=∠DAB=90°∴四边形AFED是矩形∴DE=A
以BC的中点即半圆的圆心为O设CE为x,则CE=4-x∵AE为半圆的切线∴∠OFE=90°∴∠C=∠OFE=90°在△OCE和△OFE中,OE=OE,∠C=∠OFE(HL定理)∴△OCE≌△OFE(全
以AB为直径,则OA=OB=12CD=2,∴半圆的面积为12×π×22=2π,矩形ABCD的面积为2×4=8,故阴影部分的面积为8-2π.故答案为:8-2π.
∵AD为直径,∴∠B=∠AND=90°,∠AMB=∠DAN,∴△ABM∽△DNA,∴ABDN=AMDA,∴3y=x4,即y=12x,当M在C点时x最大,为5;当M在B点时x最小,为3;∴x的取值范围是
因为∠ABC=124,所以∠ADC=56,又∠ACD=90,所以∠CAD=34,因为AC平分∠BAD,所以∠BAD=68,所以∠BCD=112.(内接于圆的四边形对角是互补的,直径所对的角为直角)
1、此概率=正方形面积除以圆面面积2、正方形面积=AD*CD3、AD平方+CD平方=2分米的平方,所以AD=CD=根号2分米,所以AD*CD=根号2*根号2=2平方分米4、圆的面积=πR平方=π*1的
因为N在圆上AD是直径所以∠AND=90°△ADN是直角三角形由因为在矩形ABCD中AD∥BC∠BMA=∠DAN所以Rt△ABM∽Rt△DNA所以AM/DA=AB/DN所以x/4=3/y所以y=12/
AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/
设AS=x、AP=y,由菱形性质知PR⊥SQ,且互相平分,这样得到8个直角三角形,易知PR与SQ的交点是矩形ABCD的中心.由已知可得其中6个三角形的边长分别为15、20、25.由对称性知CQ、CR的