如图矩形ABCD中M,N分别为AB CD的重点将A折叠只MN上 bn=根号21

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:59:28
如图矩形ABCD中M,N分别为AB CD的重点将A折叠只MN上 bn=根号21
如图,已知四边形ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点.

证明:(1)设PD的中点为E,连AE,NE,则易得四边形AMNE是平行四边形则MN∥AE,MN⊄平面PAD,AE⊂平面PAD所以MN∥平面PAD(2)∵PA⊥平面ABCD,CD⊂平面ABCD∴PA⊥C

如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧面PAD⊥底面ABCD,PA=PD,M,N分别为AB,PC中点,求证

解析:根据题意我们可以知道PA⊥PD;而平面PAD⊥平面ABCDPA=PD所以点P在平面ABCD上的射影是AD的中点又因为AD⊥CD所以PA⊥DC既PA⊥面PCD如果取PD中点为F则四边形AMNF为平

如图,已知四边形ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点

证明(1)取PB中点Q,连接NQ,MQ∵Q是PB中点,M是AB中点∴MQ//PA∵N是PC中点∴NQ//BC∵PA⊥面ABCD∴PA⊥AB∴MQ⊥AB∵ABCD是矩形∴AB⊥BC∴AB⊥NQ∴AB⊥面

如图,PA⊥矩形ABCD所在的平面,PA=AD,M,N分别是AB,PC的中点.

取PD的中点E,连接AE、NE因为,E、N分别是PD、PC的中点所以,EN平行且等于CD的1/2又因,CD平行且等于AB所以,EN平行且等于AB的1/2因为,M是AB的中点所以,EN平行且等于AM所以

已知;如图,在矩形ABCD中M,N分别是边AD,BC的中点,E,F分别是线段BM,CN的中点.

(1)菱形连接MN,由矩形对称性可知MN为其对称轴容易证明Rt△MNB≌Rt△MNC,且NE,NF是直角三角形斜边上的中线∴有ME=EN=NF=FM,∴四边形MENF是菱形(2)对角线相等的菱形是正方

如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD,BC分别相交于M、N,与BD相交于点O,连接BM,DN

(1)∵矩形ABCD∴AD∥CB∴∠MDB=∠NBD∵MN垂直平分BD∴BO=DO∵∠MOD=∠NOB∴△MOD≌△NOB(ASA)∴ON=OM∴BD⊥MN且BD、MN互相平分∴四边形MBND是菱形(

如图,在矩形ABCD中,M为BC的中点.求证:AM=DM

/>∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°,又M是BC中点,∴BM=CM,∴△ABM≌△DCM﹙SAS﹚,∴AM=DM.

如图,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=AD,又M,N,E分别是AB,PC PD的

1.∵M,N,E分别是AB,PCPD的中点∴NE‖CD且NE=CD/2所以四边形AMNE是平行四边形,有MN‖AE∴MN〃平面PAD2.∵PA⊥平面ABCD,AE是一条斜线,AD为其在平面ABCD上的

如图,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=AD=a,又M,N分别是AB,PC的中点,

取CD中点H,连结MH、NH,PA⊥平面ABCD,PA⊥AB,AM=BM,PN=CN,△AMP≌△BCM,MC=PM,△PCM为等腰△,MN⊥PC,PA⊥CD,CD⊥AD,CD⊥平⊥CD面PAD,

如图,正方形ABCD中,有两个分别内接于三角形ABC与三角形ACD,他们的面积分别为m,n,则m/n=

设正方形边长为1,m的面积就是1/2×1/2=1/4再设n的边长为x,如图,AD=1,可求x再算n面积为x的平方,等于2/9所以m/n=9/8明白吗?

如图,ABCD为矩形,PA⊥平面ABCD,PA=PD,M,N分别为PC,AB中点,求证:MN⊥平面PCD

根据题意:只需证明mn//平面PCD的法向量n1即可以a点为坐标系的原点AB为x轴AD为y轴AP为z轴假设矩形的边长ab=aad=b那么根据题意ap=ad=b设A点为(0,0,0)B(a,0,0)D(

如图,矩形ABCD中,对角线AC,BD交与点O,M,N分别是OA,OD的中点,BC=8CM.

证明因为ABCD是矩形所以AC=BD且OA=OD=OC=OD因为MN为中点所以OM=ON且MN//AD因为AD//BC所以MN//BC因为OB=OC且角MOB=角NOC所以三角形MOB全等于三角形NO

如图:在矩形ABCD中,E,F分别为边AB,CD的中点,N在EF上,M在AD上且MN=AM,BM=AB.求∠ABM,∠M

题有问题,BM=AB?如是BN=AB延长MN交BC于G(提示一下,详细过程自己补充)三角形ABM,NBM,NBC全等角ABM=角MBN=角NBC=90/3度=30度

如图,四边形ABCD是矩形的弹子球桌面.有黑,白两球分别位于N,M两点位置上.

很简单,我们已经知道NE是等于N'E的,将MN‘连接起来后,可知这是最短的一种连接方法(两点之间线段最短)∵NE=N'E  ∠NEP=∠N'EP 

如图,在四棱锥P-ABCD中,底面ABCD是矩形,M,N分别为PA,BC的中点,PD垂直于平面ABCD,且PD=AD=根

前两问用向量法解比较简便1.建立坐标系,以D为原点,DA为X轴,DC为Y轴,DP为Z轴则各个点的坐标为P(0,0,√2),A(√2,0,0),B(√2,1,0),C(0,1,0)由中点关系,易知M,N

如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点.

它是一个菱形,再问:ok再答:连MN易得MN⊥BC∴P是直角三角形MNB斜边上的中点∴PM=MP∵DM//=BN∴四边形MDNB是平行四边形∴MB=ND,MB//ND∵MP=MB/2NQ=ND/2∴M

如图,在矩形ABCD中,BC=8cm,AC和BD相交于点O,M和N分别是OA,OD的中点

1、因为ad//bc,mn分别为ao,do的中点,所以,mn//ad,mn//bc又因为abcd为矩形,所以ob=oc,om=on,因为角mob=角noc,所以三角形mob全等三角形noc,所以mb=

如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.

证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=12AD,CN=12BC,∴AM=CN,在△MAB和△NDC

如图,在四棱锥P-ABCD中,四边形ABCD为矩形,AB⊥BP,M,N分别为AC,PD的中点.

(1)连接BD交AC与M在三角形BPD中,M、N分别是BD,PD的中点所以MN平行BPBP在面ABP内所以MN平行于面ABP(2)因为AB⊥BP,AB⊥BC所以AB⊥面BCP所以AB⊥PC必要性:又因