如图矩形abcd中e是bc的中点ed垂直ae
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:00:16
由矩形ABCD,DE⊥AM可得△ADE∽△ABM,则:DEAB=ADAM,得DE=AD•ABAM=aba2+(12b)2=2ab4a2+b2.
(1)菱形连接MN,由矩形对称性可知MN为其对称轴容易证明Rt△MNB≌Rt△MNC,且NE,NF是直角三角形斜边上的中线∴有ME=EN=NF=FM,∴四边形MENF是菱形(2)对角线相等的菱形是正方
由第一问可知△ABE∽△DCG,得到AB/BE=CG/CD,得到CG=1/2,那么EG=3/2,同理可以得到△EFG∽△DCG,得到EG/FG=DG/CG,在直角三角形CDG中,CD=1,CG=1/2
(1)∵矩形ABCD∴∠B=∠C=90°∵AF⊥DF∴∠GEF+∠EGF=90°∵∠DGC=∠EGF,∠AEB=∠GEF【也可用∠1∠2表示】∴∠DGC+∠AEB=90°∵∠BAE+∠AEB=90°∴
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B
(1)三角形ABE相似于三角形ECD相似于三角形DEA因为矩形ABCD所以角C=角B=90度因为矩形ABCD所以AD//BC所以角ADE=角DEC,角DAE=角AEB因为AE⊥DF所以角AED=90度
因为AD=AE角DAE=角AEB(内错角)角DFA=角ABE=90所以三角形ABE全等于三角形ADF所以AB=DF又因为AB=CD所以DF=CD因为DE为公共边角DFE=角dce所以三角形DFE全等于
(2)拟用面积投影定理.求得:PD=AC=根号(20)=2根号5.AE=根号5,角PDC=90度.求得CE=根号(5+4)=3.在三角形AEC中,用余弦定理,得cos角EAC=[5+20-9]/[2*
(1)△ABE与△ADF相似.理由如下:∵四边形ABCD为矩形,DF⊥AE,∴∠ABE=∠AFD=90°,∠AEB=∠DAF,∴△ABE∽△DFA.(2)∵△ABE∽△ADF∴AEAD=ABDF,∵在
2ab除以根号(4a平方+b平方)
设AE=BC=2a,则CE=BE=a,AD=BC=AE=2a,∠AFD=∠B=90°,∠ADF=90°-∠DAE=∠BAE△ADF≌△EAB,可知:AF=BE=a所以:EF=AE-AF=2a-a=a=
设CE=x,则BE=4-x∵四边形ABCD是矩形∴ΔABE是直角三角形∵四边形AECF是菱形∴AE=EC由勾股定理得;AB²+BE²=AE²=CE²即2
如图, ∵AO=CO,∠OAD=∠OCB(内错角),∠AOE=∠COF=90∴△AOE≌△COF, OE=OF∴AECF是菱形(对角线互相垂直且平分的四边形是菱形)
因为矩形ABCD∽矩形FCDE且面积比为3所以边的比为根3因为AD比AB=根3所以AD=4根3所以ABCD面积为12根3
∵ABCD是矩形∴∠B=∠BAD=90°,AD=BC=2b∵E是BC的中点∴BE=1/2BC=b∴AE=√(AB²+BE²)=√(a²+b²)∵DF⊥AE∴∠A
S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x
答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C
因为ABCD为平行四边形,所以AB=DC.因为BE=FC,所以BE+EF=CF+EF,即BF=EC因为在三角形ABC和三角形EDC中,AB=DCBF=ECAF=ED所以三角形ABF全等于DEC,角B=