如图点o为三角形ABC的三条中线ad
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:27:20
∵AB=AC,∴∠ABC=∠ACB,又∵∠ABO=∠ACO,∴∠ABC-∠ABO=∠ACB-∠ACO,即∠OBC=∠OCB,∴△OBC是等腰三角形.
取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
OED周长=10因为OE=BEOF=FC又因为BE+EF+FC=BC=10所以OE+EF+FC=BC=10(这道题是利用角平分线使被平分的两个角相等然后平行使角ABO与另一个角BOE相等又因为角ABO
三角形ABC的面积:三角形OBC的面积=3:1再问:麻烦你写出详细的过程,好吗?再答:设BC的中点为D,在三角形ABC中,作BC上的高AH,在三角形OBC中,作BC上的高OH'。三角形ADH相似三角形
因为O为△ABC的中线AD、BE、CF的交点所以△ABC=2△ABD=2△ADC=2△BCE=2△CAF=2△ABE△AFO=△FBO=△BDO=△COD=△CEO=△AFO所以S三角形=6AFO=3
题目不对吧?应该是OH=1/3(OA+OB+OC)证明:OH=OA+AH=OA+2/3AD=OA+2/3(AB+BD)=OA+2/3(AB+1/2BC)=OA+2/3AB+1/3BC=OA+2/3(O
连接AO,BO,设AO,BO延长线(或是其本身)分别交BC,AC于点D,E,连接PD,PE∵PO⊥面ABC∴PO⊥BC,PO⊥AC又∵PA⊥BC,PB⊥AC∴BC⊥面PAD(O在面PAD上),AC⊥面
∵∠COG=90°-½∠BCA又∵∠DOB=∠AOE=180°-∠OAE-∠OEA=180°-∠OAE-(∠OBC+∠BCE)=180°-∠OAE-∠OBC-∠BCE=180°-&fra
如图,三角形面积为:0.5*((x+z)*5+(x+y)*5+(z+y)*5)=2.5*(2*(x+y+z))周长为:2*(x+y+z)=40所以面积等于40*2.5=100
连接OA,OB,OC三角形ABC的面积等于OAB,OAC,OBC三个三角形的面积之和S=S1+S2+S3=1/2*OD*(AB+BC+AC)=1/2*5*40=100
S△ABC=6×8×1/2=24因为O是三角形角平分线的交点所以OD=OE=OF(用角平分线上的点到交的两边距离相等得出,此结论无需写证明过程,可直接用)设OD为x则S△ABC=(AB×OF×1/2)
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
SA*OA向量+SB*OB向量+SC*OC向量=1/2*向量OC*向量OB*向量OA*sinBOC+1/2*向量OC*向量OA*向量OB*sinAOC+1/2*向量OA*向量OB*向量OC*sinBO
百度百科“三角形的四心”,有详尽的相关证明
140度,在三角形中,由于外接圆O的圆心为O点,角BAC为圆周角,在同一个圆中,同弧对应的圆周角是圆心角的一半.
18*3/2=27有这个面积公式,三角形面积等于三角形周长乘以内切圆半径的积的一半
连接各交点,将重叠部分分为了6个小三角形,可以看出这6个小三角形是全等的正三角形,且和非重叠部分的6个小三角形也全等.从而知道重叠部分的面积为6/9*原三角形的面积√3/6
证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B