如图正方形abcd中点ef分别在bccd上三角形AEF为等边三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:14:18
∵AB=ADAE=AF∴Rt△ABE≌Rt△ADF(HL)∴BE=DF
延长CE,BA,交与Q点.首先三角形QAE与三角形CDE,三角形FCB全等,所以QE=DC=AB,另外由于三角形EDC与三角形FCB全等,所以可以证明出CE垂直于FB,所以角BME为直角,因此AM是直
1/2,连接bd两点
在正方体中平面BB1D1D垂直于平面ABCD,又因为EF在平面ABCD上,所以EF垂直于平面BB1D1D,且BD1在平面BB1D1D上,所以EF垂直于BD1
正方形ABCD中,点E,F分别是边AD,AB的中点,连接EF(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:_EF⊥GF且EF=GF_______;(2)若点P为BC延长线上一动点,
⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=
如图,EF是⊿ACD的中位线,OP=OD/2=6. MN=2PM=2√(12²-6²)=12√3.PB=18.MB=NB=√[18²+(
证明:过点A作AQ⊥BC于Q,过点D作DT⊥BC于T,过点E作EP⊥AD交DA的延长线于点P,过点F作FS⊥AD的延长线于S,过点M作MN⊥AD于N∵AQ⊥BC,DH⊥BC,AD∥BC∴矩形AQHD∴
连结OE、OF可得四边形OEDF为正方形,连结OD交EF于G,则OG=1/2OD=6.连结OM,在Rt△OGM中,OM=12,OG=6,由勾股定理得MG=6倍根号下3,再由垂径定理可求得MN=2MG=
本题有两个答案:1/3,5/3,以P在圆弧左侧为例:先证OP⊥MG,△BHK相似于△BGM,,△BHK相似于△HAO,然后利用比的一些性质得BK=1/3具体证明如下:∵正方形ABCD,边长为2,O为A
解题思路:请填写破解该题生的切入点、思路脉络及注意事项(20字以上),学生将对此进行打分解题过程:同学你好,能把,图形给我重新上传吗?我这里看不到
G点在哪啊?如果本题有什么不明白可以追问,再问:等等,我发个图再答:∵E、F分别为AB和bC中点∴BE=CF=5/2;;∴ΔCEB≌ΔDFC∴∠BCE=∠CDF∵∠CDF+∠CFD=90°;∴∠CFD
(1)若OP的延长线与射线AB的延长线相交,设交点为H.如图1,∵MG与⊙O相切,∴OK⊥MG.∵∠BKH=∠PKG,∴∠MGB=∠BHK.∵BGBM=3,∴tan∠BHK=13.∴AH=3AO=3×
连接BD,因为CF=DF,所以S△BDF=S△BCF.同理,S△BAE=S△BDE所以阴影面积是正方形的一半
(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC
证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG
稍等再答:证明:将AE与DF的交点设为O∵正方形ABCD∴AD=CD=BC,∠ADC=∠C=90∴∠DAE+∠AED=90∵E是DC的中点,F是BC的中点∴DE=CD/2,F=BC/2∴DE=CF∴△
证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM