如图正方形abcd中AD∥BC.E为CD中点.EF∥AB交BC于F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:15:54
(1)11-5=6,6/2=33*3+4*4=25,根号25=5,是梯形的斜边.所以周长是5+5+5+11=26
一楼想多了,这是初中生.过点A、D分别作BC的垂线,垂足分别为E、F,因AB=AC,所以E为BC中点,所以DF=AE=0.5BC=0.5BD,所以∠CBD=30°,∠BCD=0.5(180°-∠CBD
取CD的中点G,连接EG、FG∵E是BD的中点,G是CD的中点∴EG是△BCD的中位线∴EG=BC/2,EG∥BC∵F是AC的中点,G是CD的中点∴FG是△ACD的中位线∴FG=AD/2,FG∥AD∵
(1)S梯形ABCD=12AC•BD=152;证明:(2)∠BAF=∠BCD.连接EF、BF,∵DF=CF,∠DEC=90°,∴EF=CF=12CD.∴∠FEC=∠C.又∠C+∠ADF=180°,∠F
过D作DE∥AB,交CB于E点,又∵AD∥CB,∴四边形ABED是平行四边形,∴EB=AD=3,DE=AB=4,∵CB=6,∴EC=BC-BE=6-3=3,∵CD=5,∴CD2=DE2+CE2,∴△D
证明:∵如图,四边形ABCD中,AD∥CB,AD=BC,∴四边形ABCD是平行四边形,∴AB=CD,∠A=∠C.∴在△ABD与△CDB中,AD=CB∠A=∠CAB=CD,∴△ABD≌△CDB(SAS)
证明:(1)∵EF∥BC,AD∥BC,∴EF∥AD.在四边形ADEF中,由FA=2,AD=3,∠ADE=45°,可证得EG⊥DE,又由FA⊥平面ABCD,得AF⊥CD,∵正方形ABCD中CD⊥AD,∴
(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠DBC,∴BD平分∠ABC;(2)过A作AE⊥BC于E,过D作DF⊥BC于F,∴∠AEF=∠DFE=9
(1)如图,过点A作AE⊥BC,∴AE=4,又AD=5,BC=11,∴BE=12(BC-AD)=3,∴CD=AB=5,∴梯形的周长为AD+DC+BC+AB=5+5+11+5=26.(2)证明:如上图,
过点A作BC的垂线段AE,则BE=12(BC-AD)=32,在Rt△ABE中,AB=BEcos∠B=3,故可得梯形ABCD的周长=AB+BC+CD+AD=3+7+3+4=17.
如图1所示AD+BC=AB则可以知道AB=AB'=B'A'=BA'四个边都相等的平行四边形是菱形如图2所示四个∠都是直角,且C'D=D'C,C'
过点D作DG∥AB,交BC于G,∵AD∥BC,DG∥AB∴四边形ABGD为平行四边形则AD=BG∵DG∥AB,EF∥AB∴EF∥DG∵E为CD的中点∴EF为△CDG的中位线∴GF=CF∴BF=BG+G
S1=S2+S3取BC中点E,连接DE,可以得到AB=DE,CE=AD,DE⊥CD所以AB²+CD²=DE²+CD²=CE²=AD²也就是S
过点D作DE∥AC交BC的延长线于点E,∵AD∥BC(已知),即AD∥CE,∴四边形ACED是平行四边形,∴AD=CE,AC=DE,在等腰梯形ABCD中,AC=DB,∴DB=DE(等量代换),∵AC⊥
连接a与bc中点e,有题可知四变形abed为菱形,连接ae,因为ad和ce平行且相等,所以四变性qecd也是菱形,因为三角形abe三边相等,所以角abe为60度,三角形abe的高为二倍的根号三,所以,
过点A,D作BC的垂线交BC延长线于点G,点H,使四边形AGHD为矩形.过点D作EH的垂线交EH于点M,所以D点到面BCEF的距离为DM.由已知可得DH=√2/2,ED=AD=2√2,EH=√(ED�
(1)∵AD∥BC,∴∠ACB=∠CAD.(2)∵∠B=∠ACD,又∠ACB=∠CAD,∴△ABC∽△DCA,∴ACAD=BCAC,即AC2=BC•AD.∵AC=6,BC=9,∴62=9•AD.解得A
证明:作AH⊥BC于H,延长EP交AH于G,∵l是AD的垂直平分线,∴AM=MD=12AD,l∥AH,又∵四边形ABCD是直角梯形,∴四边形AHCD是矩形,∴AH=CD,∵PE⊥l,∴EG⊥AH,∴四
(1)∵等腰梯形ABCD中,AD∥BC,∴∠B=∠C,∵∠ADC+∠C=180°,∴∠C=60°∵等腰梯形的底角相等,即∠B=∠C,∴∠B=60°;(2)过点D作DE∥AB交BC于点E.∵AD∥BC,
(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形.∴AE=DC.(2)∵BD平分∠ABC,∴∠ABD=∠DBC.∵AD∥BC,∴∠DBC=∠ADB,∠ABD=∠ADB,AB=AD.∵四边形