如图抛物线等于-x2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:47:55
(1)解y=−x2+4xy=13x2 得x=3y=3 或x=0y=0,∴A点的坐标为(3,3);(2)如图所示:作AE∥y轴,直线x=t与抛物线y=-x2+4x的交点B(t,-t2
(1)由C的横坐标为0,知C(0,6)(用抛物线的方程),而B与C纵坐标相同,求知B(3,6)(2)由OD=5,OE=2EB知D(0,5),E(2,4);F在直线DE上且纵坐标为0,得F(10,0).
依题意,解得抛物线与X轴的交点坐标为(-1,0)和(3,0),C(0,-3),D(1,-4),因为没有图,所以分两种情况(1)当A(-1,0)时,设P点坐标为(1,m),连接AP交Y轴于点E,则E点的
容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=
求采纳! 我也很辛苦
解①依题意可知方程-x²+bx+c=0的两个根是x1=1x2=-3即方程x²-bx-c=0的两个根为1和-3由韦达定理b=1-3=-2-c=1×(-3)c=3所以抛物线的解析式为y
如下图所示,∵抛物线y1=-x2+2向右平移1个单位得到抛物线y2,∴两个顶点的连线平行x轴,∴图中阴影部分和图中红色部分是等底等高的,∴图中阴影部分等于红色部分的面积,而红色部分的是一个矩形,长、宽
(1)根据题意得(m-3)2-4•(-m)1=3,解得m1=0,m2=2,即m为0或2时,抛物线与x轴的两个交点间的距离是3;(2)∵△=(m-3)2-4•(-m)=m2-2m+9=(m-1)2+8>
(1)、根据表达式y1=-x2+2可以求出定点是(2,0)因为图像是右移一个单位所以y2的定点是(1,2)(2)、因为两个图像的形状相同,阴影部分刚好组成两个方格,所以阴影部分的面积就是1*2=2(3
方法一:特殊化,抛物线x2=4y的焦点是F(0,1),取过焦点的直线y=1,依次交抛物线与圆x2+(y-1)2=1的点是A(-2,1)、B(-1,1)、C(1,1)、D(2,1),∴|AB|×|CD|
∵抛物线y=x2+m其对称轴为y轴,∠ACB=90°,∴△ACB是等腰直角三角形,∴AO=BO=CO=|m|,∴A(m,0),故0=m2+m,解得:m1=0(不合题意舍去),m2=-1.故抛物线的解析
(1)y=x2+4x+k=(x+2)2+k-4∴抛物线的顶点C的坐标为(-2,k-4)(4分).(2)过点C作CD⊥x轴于点D,由抛物线的对称性可得CA=CB∵△ABC是直角三角形∴BD=CD=4-k
(1)因为A(3,0)在抛物线y=-x2+mx+3上,则-9+3m+3=0,解得m=2.所以抛物线的解析式为y=-x2+2x+3.因为B点为抛物线与x轴的交点,求得B(-1,0),因为C点为抛物线与y
L2:y=-(x+1)(x-3)=-x²+2x+3P(x0,y0)y0=-x0²-2x0+3P关于原点的对称点Q(x,y)x=-x0y=-y0-y=-x²+2x+3y=x
∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴
1.将点(1,-5)和(-2,4)带入抛物线y=x2+bx+c,则有-5=1+b+c和4=4-2b+c,求出b=-2,c=-4带入得出抛物线的解析式:y=x2-2x-42.设N点为(x1,y1),M点
(1)y=-x^2+bx+c把点A和C坐标代入得0=-1-b+c和4=c由此得c=4b=3所以y=-x^2+3x+4(2)y=-x^2+3x+4和y=x+1消去y得x^2-2x-3=0x1=-1x2=
(1)能设BQ交y轴于C点因为是正方形,所以∠AOB=∠AOQ=45°可知三角形BCO为等腰直角三角形所以BQ两点的横纵坐标绝对值相等即|X|=|y|,因为y=x²,所以BQ坐标分别为(-1