如图所示在正方形abcd中点ef分别是ad dc上的点且af垂直be

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:16:03
如图所示在正方形abcd中点ef分别是ad dc上的点且af垂直be
如图所示,四边形ABCD是一个正方形.E,F分别为CD和BC边上的中点.已知正方形ABCD的边长是30厘米,那

设O是CF,AE交点,则O是⊿BCD的重心.AO/AE=2/3阴影面积=S⊿ABC+S⊿AOC=S⊿ABC+(2/3)S⊿ACE=S⊿ABC+(2/3)(1/2)S⊿ACD=S⊿ABC+(1/3)S⊿

在如图所示的几何体中,四边形ABCD是正方形,MA垂直面ABCD,PD平行MA,E,G,F分别为MB,PB,PC中点

证明:因为:E,G,F分别是BM,PB,PC的中点所以:EG∥PM,且EG=(1/2)PM,GF∥BC,且GF=(1/2)BC由于:BC∥AD,BC=AD=DP所以:GF∥AD而:AD,PM都在平面A

正方形ABCD,点E为BC中点,点F在CD上

解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三

如图所示,正方形ABCD中,点E是AD的中点,点F在DC上且DF=1/4DC

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.

如图所示在正方形abcd中,点f在cd上,ae平分∠baf,e为bc的中点,求证;af=be+df

证明:作一边为AD顶点为A 角度等于∠BAE的角 并交CD的延长线于M点  AE平分∠BAF所以 角BAE=∠EAF=MAD 另根据四边形A

如图所示,已知E是正方形ABCD 的边CD的中点,点F在BC上,且角 DAE=角FAE,求证:AF=AD+CF

证明:延长AE交BC的延长线于点G∵AD∥BC∴∠DAE=∠G,∠D=∠GCE∵E是CD的中点∴DE=CE∴△ADE≌△GCE(AAS)∴CG=AD∴FG=CG+CF=AD+CF∵∠DAE=∠FAE∴

初三数学 几何的如图所示,在正方形ABCD中,点E是AB的中点,EG⊥DE,交角CBF的平分线BG于G,DE=EG

作GH⊥BF交BF于H.∵GB平分∠CBF,∠CBF=90°∴∠GBF=45°,△GBH为等腰直角△∴BH=GH∵DE⊥EG∴∠ADE=∠GEH∴Rt△ADE∽Rt△GEHEH/GH=DA/AE=2:

在正方形ABCD中,E,F 分别是AB,AD的中点,求证CF⊥DE

设CF和DE交于点O证明:∵AE=DFAD=DC∠EAD=∠FDC∴△EAD≌△FDC∴∠AED=∠DFC又∠ADE+∠AED=90°∴∠ADE+∠DFC=90°∴∠FOD=90°∴CF⊥DE

如图所示,有一个正方形的匀强磁场区域abcd,e是ad的中点,f是cd的中点,如果在a点沿对角线方向以速度v射入一带负电

A、如果粒子的速度增大为原来的二倍,磁场的磁感应强度不变,由半径公式r=mvqB可知,半径将为原来的2倍,根据几何可知,粒子从d点射出.故A正确.B、设正方形的边长为2a,则粒子从e点射出时,轨迹半径

如图所示,在直四棱柱ABCD-A1B1C1D1中,底面是正方形,E、F、G分别是棱B1B、D1D、DA的中点.求证:平面

∵G、F分别是AD、D1D的中点,∴GF是△DAD1的中位线,∴GF∥AD1,∴AD1∥平面BGF.∵ABCD-A1B1C1D1是直四棱柱,∴BB1=DD1、BB1∥DD1.∵FD1=DD1/2、BE

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

某工厂生产的边长为1米的正方形装饰材料ABCD如图所示,点E在BC上,点F是CD的中点.

/>1、△ABE的面积=½×1×x=½x△EFC的面积=½×(1-x)×(1÷2)=(1-x)/42、½x×50+(1-x)/4×100+[1-½x-

在正方形ABCD中,E为AD的中点,BE,AC相交与G,

三角形AGE和三角形BGC相似,相似比为1:2(因为AE=1/2BC)所以S三角形AGE:S三角形BCG=1:4,BG=2EG所以S三角形ABG=2*S三角形AGEAD=2AE所以S三角形ADC=2*

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

如图所示,在正方形ABCD中,E为BC的中点,F为AB上的一点,且BF=4分之1 AB.已知正方形ABCD的面积为16

如图,边长AB=4BE=EC=2BF=1/4AB=1Sdce=1/2X4X2=4Sbef=1/2x2x1=1Sdaf=1/2x4x3=6Sdef=Sabcd-Sdce-Sbef-Sdaf=5

如图所示,在正方形ABCD中,E、F分别为AD、DC的中点,BF、CE相交于点M.求证AM等于AB.

连结B、E易证EC⊥BF∴A、B、M、E四点共圆∴∠ABE=∠AME∵∠AMB=90-∠AME∠ABM=90-∠FBC∠FBC=∠ABE=∠AME∴∠ABM=∠AMB∴AM=AB

如图所示,在正方形ABCD中,M是CD的中点,E是CD上的一点,且∠BAE=2∠DAM,求证AE=BC+CE.

取BC中点N,过N作NH⊥AE,垂足HM是CD的中点,可知BN=DM易证ΔABN≌ΔADM则有∠BAN=∠DAM因∠BAE=2∠DAM故AN平分角BAE所以有NB=BH由ΔABN≌ΔAHN可得AH=A

已知:如图所示,在正方形ABCD中,F为DC的中点,E为BC的中点,且EC=四分之一BC.求证:AF垂直EF

因为四边形ABCD为正方形,所以AD=DC=BC角D=角C=90°又因为F的CD中点,所以CF/AD=1/2因为EC=四分之一BC所以EC/DF=1/2根据两边夹一角的定理△ADF∽△FCE所以角DF