如图所示,已知AB CD,EG,FR分别是角BEF的平行线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:02:05
如图所示,已知AB CD,EG,FR分别是角BEF的平行线
已知在正方形ABCD中,点E.F.G.H分别在AB.BC.CD.DA上,且EG垂直于FH,求证EG=FH.

证明:分别过点G、H作GN⊥AB,HM⊥BC,垂足分别为N,M,则∠GNE=∠HMF=90°且易得GN=HM,由正方形ABCD得∠B=90°,由EG⊥FH得∠EOF=90°所以∠OEB+∠BFO=18

在如图所示的几何体中,四边形ABCD为平行四边形,∠ACD=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥A

证明:(Ⅰ)∵EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,∴∠EGF=90°,△ABC~△EFG,由于AB=2EF,∴BC=2FG,连接AF,∵FG∥BC,FG=1/2BC,在▱

如图所示,已知直线MN分别与直线AB,CD相交于E,F,AB平行于CD,EG平分∠BEF ,FH平分∠CFE,求证EG平

答:因为AB//CD所以∠BEF=∠CFE又因为EG平分∠BEF,FH平分∠CFE所以∠GEF=∠HFE所以EG平行于FH

如图所示,已知正方体ABCD-A1B1C1D1.

(1)连接B1C,可证B1C是A1C在平面BB1C1C上的射影,所以所求角就是同一平面内B1C与BC1的夹角,90度(2)连接BD交AC于点P,可证BD⊥平面AA1C1C,可证C1P是BC1在平面AA

已知如图在平行四边形abcd中ae垂直bdcf垂直bd,垂足gh分别是 分别是adbe的中点求证eg=fh,eg||fh

如图,∵∠AED=90°,AG=DG,∴EG=1/2AD(直角三角形斜边中线等于斜边的一半)同理,FH=1/2BC,又∵AD=BC,∴EG=FH∵AD∥BC,∴∠ADB=∠CBD,又∵∠AED=∠CF

如图所示,在正方形ABCD中,E是对角线AC上一点,EF垂直CD于F,EG垂直AD于G,求证:BE=FG.

证明:如图,连接DE,在正方形ABCD中,AB=AD,∠BAC=∠DAC,∵在△ABE和△ADE中,AB=AD∠BAC=∠DACAE=AE,∴△ABE≌△ADE(SAS),∴BE=DE,∵EF⊥CD于

已知如图所示,在平行四边形ABCD中,各内角的平分线分别交于E.F.G.H,求EG=FH

因为AE平分∠BAC、ED平分∠ADC    ∠BAD+∠ADC=180°所以∠DAE=1/2∠BAD、∠ADC=1/2∠ADC  &nbs

初三数学 几何的如图所示,在正方形ABCD中,点E是AB的中点,EG⊥DE,交角CBF的平分线BG于G,DE=EG

作GH⊥BF交BF于H.∵GB平分∠CBF,∠CBF=90°∴∠GBF=45°,△GBH为等腰直角△∴BH=GH∵DE⊥EG∴∠ADE=∠GEH∴Rt△ADE∽Rt△GEHEH/GH=DA/AE=2:

已知:如图,平行四边形ABCD的四个内角平分线相交于点E、F、G、H.求证EG=FH

∵AH、BG、CF、DE分别为平行四边形ABCD四角的角平分线根据平行四边形性质可得角AHB、AED、DFC、BGC皆为90°可得四边形EFGH为矩形根据矩形对角线相等的定理即证EG=FH

如图,已知平行四边形ABCD,AE=四分之三AD,DF:FC=3:1求EG:GB

稍等再答:设AD=BC=6X,延长AF交BC延长线于点H∵AE=3AD/4,AD=6X∴AE=4X∵DF:FC=3:1∴FC/DF=1/3∵AD∥BC∴CH/AD=FC/DF=1/3∴CH=AD/3=

已知,在正方形ABCD中,点E.F.G.H分别在AB.BC.CD和DA上,且EG垂直于FH,求EG=FH.

(请按如下描述同时作图)证明:作FM⊥DA,EN⊥CDEG与FH交于O;EN与FH交于S∵ABCD是正方形∴FM=AB=BC=EN,且EN⊥FM∵EG⊥FH∴∠EGN=∠ESO∵EN⊥FM∴∠FHM=

如图所示,四边形ABCD中,E,F,G,H分别是各边中点,求证:四边形ABCD的面积≤EG·FH

易知S四边形ABCD=2S四边形EFGH设EG与FH的夹角为α则S四边形EFGH=1/2EG·FH·sinα≤1/2EG·FH∴S四边形ABCD=2S四边形EFGH≤EG·FH

已知,如图所示,在正方形ABCD中,E是AC上的一点,EF⊥AB于F,EG⊥AD于G,AB=6,AE比EC等于2比1,求

我算得18,容易证得四边形AFEG是矩形.AC是角平分线,利用角平分线的性质可以证明GE=GF,所以四边形AFEG是正方形.AC=6根号2,AE=4根号2,所以AE的平方得18即正方形的面积

已知,如图所示,在矩形ABCD中,AC与BD相交于O,E为OD的中点,EF⊥BC于F,EG垂直AB于G,

(1)证明:∵E为OD的中点,EG垂直AB于G,EF⊥BC于F∴△BGE∽△BAD;△BEF∽△BDC∴BG/BA=GE/AD=BE/BD=EF/DC=BF/BC=3/4∴矩形GBEF∽矩形ABCD(

已知如图,平行四边形ABCD的四个内角平分线相交于点E,F,G,H.求证,EG=FH

LZ你确定题目无错么?怎么我用约束画图得不到那个结论啊~很明显的EFGH应该是矩形的.

已知:在正方形ABCD中,点E、F、G、H分别在AB、BC、CD和DA上,且EG⊥FH,求证:EG=FH

 如图,作AM∥HF,BN∥EG则AM⊥BN  ∠NBC=90º-∠AMB=∠MAB⊿NBC≌⊿MAB﹙ASA﹚ ∴AM=BN而AM=FH,BN=EG

已知,E是正方形ABCD的一边AB上任一点,EG⊥BD于G,EF⊥AC于F,AC=10cm,则EF+EG=、

设AC、BD交于点0,易证EF+EG=A0(用等积法),又因为AO=1/2AC(这应该知道吧)所以EF+EG=A0=5