如图所示,在四棱椎P-ABCD中,PA垂直平面ABCD,连接AC,AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 02:05:14
如图所示,在四棱椎P-ABCD中,PA垂直平面ABCD,连接AC,AC
(2013•淄博一模)在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,P为DN的

(Ⅰ)因为四边形ABCD是菱形,所以BD⊥AC,又ADNM是矩形,平面ADNM⊥平面ABCD,所以MA⊥平面ABCD,所以MA⊥BD,又因为AC∩MA=A,由线面垂直的判定可得BD⊥平面AMC又因为A

如图所示,在正方体ABCD—A1B1C1D1中.

设N是棱C1C上的一点,且C1N=14C1C,则平面EMN为符合要求的平面.证明如下:设H为棱C1C的中点,∵C1N=14C1C,∴C1N=12C1H,又E为B1C1的中点,∴EN∥B1H,又CF∥B

如图所示,正方体abcd-ABCD中,点P在侧面bcCB及其边界上运动,并且总保持aP垂直bD,则动点P的轨迹是

如图,BD1⊥面ACB1,又点P在侧面BCC1B1及其边界上运动,故点P的轨迹为面ACB1与面BCC1B1的交线段CB1如图,连接AC,AB1,B1C,在正方体ABCD-A1B1C1D1中,有BD1⊥

如图所示,在正方形abcd中,P是对角线AB上的任意一点

四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此

如图所示,边长为a的正方体ABCD~A1B1C1D1中,点p在侧面BCC1B1及其边界上

先找到过点A且与BD1垂直的平面:AB1C即可知道P的轨迹为B1C

如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是___.

将其还原成正方体ABCD-PQRS,连接SC,AS,则PB∥SC,∴∠ACS(或其补角)是PB与AC所成的角,∵△ACS为正三角形,∴∠ACS=60°,∴PB与AC所成的角是60°,故答案为:60°

如图所示,在多面体P-ABCD中,平面PAD垂直于平面ABCD,AB平行于DC,三角形PAD是等边三角形,已知BD=2A

1.BD=2AD=8AD=4AB=4根号5在△ABD中AB^2=BD^2+AD^2所以BD⊥AD平面PAD垂直于平面ABCD,所以BD⊥平面PADBD在平面MBD内,所以面MBD垂直于平面PAD2.三

如图所示,在四棱锥P-ABCD中,底面ABCD 是平行四边形,E为侧棱PC上一点,且PA//平面BDE,求PE:PC的值

连结BD和AC,交于O,连结OE,∵四边形ABCD是平行四边形,∴O是AC的中点,(平行四边形对角线互相平分)∵PA//平面BDE,平面PAC∩平面BDE=OE,∴PA//OE,∴OE是三角形CAP的

有一个地方不懂如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

因为对称所以PD+PE=PB+PE这样看没问题吧然后在△PBE中,两边之和大于第三边所以只有PB,PE在一条直线上才能使PB+PE最小因为P是任意一点所以这个时候P点应为BE与AC的交点.

如图所示,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BDAB=AD=A=BC=CD=√16=4∵△ABE是等边三角形∴AB=BE=AE=4要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对称点恰好是B

如图所示,在四棱锥P-ABCD中 底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为BC中点

图中B、C点标反了,E为BC的中点,也画的不对,⑴、ABCD为菱形,——》∠DAB=60°=∠DCB,DA=DC=BA=BC——》△DBC为等边三角形,E为BC中点,——》DE⊥BC,——》DE⊥AD

如图所示,在四棱锥P-ABCD中,平面PAD垂直于底面ABCD,PA等于PD等于2,AD等于2倍根号2

1、取AD中点G,连接PG,GB.△PAD为等腰直角三角形,则PG⊥AD,PG⊥面ABCD.∵菱形ABCD中,∠DAB=60,连接BD,则△ABD为等边三角形.∴BG⊥AD,又∵PG⊥AD∴AD⊥面B

(2014•南昌模拟)四棱锥P-ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图所示,则四棱锥P-ABCD的

由三视图我们易得四棱锥P-ABCD的底面棱长为a,高PA=a则四棱锥P-ABCD的底面积为:a2侧面积为:S△PAB+S△PBC+S△PCD+S△PAD=2×12×a2+=2×12×a×2a=2a2+

3.如图所示,四棱锥P-ABCD的底面为正方形,PD⊥地面ABCD,点E在棱PB上.求证:平面AEC⊥平面PDB.

证明2个面垂直,你直接证明一个面里面有一条线垂直另一个面就可以了,这个题很简单的,直接AC⊥BD,PD⊥AC,所以AC⊥面PDB,所以平面AEC⊥平面PDB

在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,AB//DC,角DAB=90°

你要求什么呢?再问:PA=AD=DC=1,AB=2,��һ����֤:MC//ƽ��PAD再答:���������������ðɣ�再答:M�������再问:MΪPB�е�再问:再答:��һ�ᰡ再

如图所示,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为______.

如图,以D为坐标原点,DA所在直线为x轴,DC所在线为y轴,DP所在线为z轴,建立空间坐标系,∵点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1∴A(1,0,0),P(

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE(1)证明:

(1)连接AD,因为,PA垂直平面ABCD,AD属于平面ABCD,所以BD垂直于PA;因为ABCD为矩形,BD垂直于AC,AC属于平面PAC,所以BD垂直于AC所以BD垂直于平面PAC (2

如图所示,在正方形ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,q求证B1D⊥平面PAC

取底面ABCD对角线交点O.连结PO、B1O,PB1,B1D1,因AP=PC,三角形APC是等腰三角形,故PO⊥AC,同理B1O⊥AC,故