如图所示,在rt三角形acb=90度,斜边上的高cd把ab边分成2分之5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:17:07
如图所示,在rt三角形acb=90度,斜边上的高cd把ab边分成2分之5
如图 在rt三角形abc,角acb=90度,cd是斜边ab上

解题思路:根据题意得出每对三角形中的两组内角相等,可得三角形相似解题过程:解:有三对三角形相似,即:△ACD∽△CBD△ACD∽△ABC,△CBD∽△ABC理由:①∵CD⊥AB,&there

如图,在RT三角形ABC中,∠ACB=90,AC=5,CB=12

证明:由于△ABC为直角三角形,且∠ACB=90°,且D在圆上则有AD为直径从而有∠AED=90°因为∠ACB=∠AED=90°,AD=AD,∠CAD=∠EAD所以△ACD全等于△AED所以AE=AC

如图所示,在Rt三角形ABC中角ACB=90,H为AB上一点,HD垂直AC于点D,且CD=BC,CE垂直AB于点E.

证明∵∠ACB=∠BEC=90°(已知)∴∠DCF=∠B(同角的余角相等)又CD=BC,∠CDF=∠ACB=90°.∴△CDF≌△BCA(ASA)∴∠A=∠F=30°,则AB=2BC;(直角三角形中,

如图所示,在Rt△ABC中,∠ACB=90度,CD⊥AB于点D,分别以AC,BC为边向三角形外作等边△ACE和△BCF,

因为∠ACB=90°,CD平分∠ACB,所以∠FCD=45°,又因为DE⊥BC,即三角形FCD由题可以知道,角ACB=角CED=角CFD=90度.所以四边形CEDF四个角均为直角.

在Rt三角形ABC中,∠ACB=90°,∠A=35°

解题思路:在Rt△ABC中,易求得∠ABC的度数,根据旋转的性质知:∠ABC、∠B′相等,∠A、∠A′相等,BC=B′C,由此可得∠CBB′的度数,进而由三角形的外角性质求得∠BCA′的度数,即可得到

如图所示,在RT三角形ABC中,角ACB=90度,D是AB上一点,BD=BC,ED垂直于AB,CD交BE于点F,求证:B

证明:∵ED⊥AB,∴∠EDB=90°.在Rt△ECB和Rt△EDB中,∵EB=EB,CB=DB,∴Rt△ECB≌Rt△EDB(HL),∴∠EBC=∠EBD,又∵BD=BC,∴BF⊥CD,即BE⊥CD

如图所示,在Rt三角形ABC中,角ACB=90度,CD垂直AB于D,AE平分角BAC交BC于E,交CD于F,求,CE:B

作EG⊥AB于G,由∠CAE=∠EAB,∠ACE=∠AGE,AE=AE,所以△ACE全等于△AEG,所以CE=EGCE:BE=EG:BE在△EGB与△ABC中,∠B=∠B,∠ACE=∠EGB,所以两三

在Rt三角形中,∠ACB=90°,CD⊥AB于D,BC=7,BD=5

求出CD=2√6sinB=CD/BC=2√6/7cosB=BD/BC=5/7sinA=cosB=5/7cosA=sinB=2√6/7tanA=sinA/cosA=BD/CD=5√6/12

如图所示,在RT三角形ABC中,角ACB=90度,a:c=2:3,则求角A,角B,的正弦值和余弦值

在直角三角形ABC中,因为角ACB=90度,所以sinA=a:c=2/3,cosA=根号[1--(sinA)^2]=根号[1--(2/3)^2]=根号(5/9)=(根号5)/3.因为角ACB=90度,

如图所示在RT三角形ABC中,角ACB=90度,AC=BC.D为BC中点,CE垂直AD于E,交AB于点F.连接DF求证角

是证明∠ADC=∠BDF吧~法一:证明:延长CF到G,使EG=CE,连接BG,则E是线段CG的中点∵D是BC的中点∴ED是三角形BCG的中位线ED//BG∴AF:BF=AE:BG.(1)∵△ABC为等

如图所示,在Rt三角形ABC中,角ACB=90度,BC=8厘米,AB=17厘米,则AB边上的高CD等于多少

思路:先利用直角三角形的勾股定理求出另一条直角边的长,再利用等积法求斜边上的高.因为在Rt三角形ABC中,角ACB=90度,BC=8厘米,AB=17厘米,所以直角边AC²=斜边AB²

在RT三角形ABC中∠ACB=90°COSA=三分之二BC=5求AB

cosA=2/3sin²A+cos²A=1所以sinA=√5/3sinA=BC/ABAB=BC/sinA=5/(√5/3)=3√5

在RT三角形ABC中,ACB=90,AC=AE,BD=BC,则ACD+BCE=____

两个等腰三角形中AEC=(180-A)/2;BDC=(180-B)/2;所以DCE=45;所以ACD+BCE=90-DCE=45

如图所示,在rt三角形abc中,角acb等于90度,

wenku.baidu.com/...4.html见第25题

已知:如图,在Rt三角形ABC中,∠ACB=Rt∠,AC=BC,CD⊥AB于点D.求证:三角形ACD相似于三角形ACB

∠CAD=∠BAC,∠ADC=∠ACB=90°所以△ADC相似△ACB再问:是∠CAD=∠ABC吧。对应角。哦还有当时没学两个三角形相似的判定。这题是在介绍引入相似三角形概念那里的练习题。所以应该是让

如图所示在Rt三角形ABC中,角ACB=90度,CD是AB边上的高,若AD=8,BD=2,求CD

解题思路:结合三角形相似进行求解解题过程:

如图所示在Rt三角形ABC中,角ACB=90度,CD是AB边上的高,若AB=13,BC=12,AC=5求CD

解题思路:根据三角形面积公式建立等式,从而求出CD解题过程: