如图所示,o是直线ac上一点,ob是一条射线,od平分角aob,oe在角boc内
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:27:59
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4
所以AO=CO.BO=DO因为AE=CF所以EO=FO.\x0d所以角DAO=角BOCBC=AD\x0d所以角DAE=角BCF\x0dBC=ADAE=CF角DAE=角BCF\x0d三角形DAE全等三角
半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2
算是个二元一次方程组应用题.设∠AOD为a,∠BOE为b,由题意得:a+b=70°2a+3b=180°(平角性质)得a=30°,b=40°.∠EOC=2b=80°
(1)∵∠AOC+∠BOC=180°,∠AOC=13∠BOC,∴13∠BOC+∠BOC=180°,解得∠BOC=135°,∴∠AOC=180°-∠BOC=180°-135°=45°,∵OC平分∠AOD
证明:(1)延长FP交DC于点G,∵AB∥CD,AC∥FG,∴四边形AFGC是平行四边形,∴AC=FG(平行四边形的对边相等),∵EG∥AC,∴EPOA=DPDO=PGOC(被平行线所截的线段对应成比
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
证明:延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)从而∠ACH=∠AHC①又∠AFC=∠AHC(
延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH 从而∠ACH=∠AHC 又∠AFC=∠AHC由①②得∠ACH=∠AFC即∠AFC=∠
/>延长CG,交圆O于点M∵AB⊥CD∴弧AC=弧AM∴∠ACG=∠F∵∠CAG=∠FAC∴△ACG∽△AFC∴AC²=AG*AF∵AG=2,GF=6∴AF=8∴AC²=2*8=1
∵N是BC的中点∴BC=2BN=14∴AB=AC+BC=12+14=26∵M是AB的中点∴BM=AB/2=13∴MN=BM-BN=13-7=5
2α+3β=180°α+β=70°解得:α=30°,β=40°. ∠EOC=2β=80°.
设∠BOE为x∵OD平分∠AOB,∠DOE=60°可得方程 2(60-x)+4x=180 解得x=30∴∠EOC=3x=90°
∠ACG=∠ABC=∠AFC,∠CAF公共,⊿ACG∽⊿AFC即AC÷AF=AG÷AC故AC^2=AG*AF
∵∠AOB=∠AOC+∠BOC=180°∠AOC=1/3∠BOC∴∠BOC+1/3∠BOC=180°∠BOC=135°∴∠AOC=45°∵OC是∠AOD的平分线∴∠AOD=2∠AOC=90°即∠COD
望采纳嘻嘻嘻60度首先∠boc是直角,∠bod:∠cod=4:1∠bod必须等于∠boc+∠cod即∠boc=3*∠cod=90°所以∠cod=30°所以∠bod=120°∠aod=180°-120°
连BFAB是圆O直径,C,F是圆上的点角ACB,角AFB都是直角.直角三角形ABC中,CD⊥AB于DAC^2=AB*AD射影定理直角三角形ABF与AED中角FAB=角EAD角AFB=角ADE三角形AB
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A
∵OE,OF平分∠AOB,∠BOC,∠AOB=120°∴∠EOB=60°又∵∠aob+∠BOC=180°∴∠BOC=60°即:∠BOF=30°∠EOF=∠EOB+∠BOF=60°+30°=90°即:∠