如图已知点EF分别在正方形abcd的边ab和bc上ab等于1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:06:08
如图已知点EF分别在正方形abcd的边ab和bc上ab等于1
已知,如图,在矩形ABCD中,E,F分别是边BC,AB上的点,且EF=ED,EF⊥ED,

由EF=ED,EF⊥ED,得∠BEF+∠CED=90°,因∠CDE+∠CED=90°,所以∠BEF=∠CDE,所以△BFE≌△ECD,所以BE=CD=4,BF=CE=3,AF=1BE=AB,∠BAE=

如图,已知正方形ABCD的边长为12cm,点P在BC上,BP=5cm,EF⊥AP,垂足为Q,与AB、CD分别交于E、F.

EF=13.过F作FG垂直AB.因为ABCD为正方形,所以AD=AB=FG=12,角B=角FGE,因为FE垂直AB,所以角FQP=角AQE,所以角EAQ+角AEQ=角EAQ+角APB,所以角AEQ=角

正△ABC和正方形DEFG如图放置,点E,F在边BC上,点D,G分别在边AB,AC上,求BC:EF

由题意可知EF=FG,FC=BEFC=FG*tg30°=EF*tg30°∵BC=2FC+EF=2tg30°*EF+EF=(2tg30°+1)EF∴BC:EF=(2tg30°+1)EF:EF=(2tg3

如图,在正方形ABCD中,点E,F分别在BC,CD上移动,但A到EF的距离AH始终保持与AB长相等,

证明:(1)∠EAF的大小没有变化.根据题意,知AB=AH,∠B=90°,又∵AH⊥EF,∴∠AHE=90°∵AE=AE,∴Rt△BAE≌Rt△HAE,∴∠BAE=∠HAE,同理,△HAF≌△DAF,

如图,已知在正方形ABCD中,EF分别是AB,BC上的点,若有AE+CF=EF,请你猜想∠EDF的度数,并说明理由.

如图所示,△DCF绕点D顺时针旋转90°得到△DAH,理由如下:∴△DCF≌△DHA,∴∠FDH=90°(旋转角),CF=HA,DH=DF,∵AE+CF=EF,∴AE+HA=EF,即EH=EF,在△D

如图,已知在正方形abcd中,e,f分别是ab.bc上的点,若有ae+cf=ef,求∠edf的度数

将三角形AED沿点D顺时针旋转90度,得三角形DCE'可得CE'=AE,DE'=DE,角EDE'=90度又ae+cf=ef,则FE'=FE,可得三角形DEF全等于三角形DE'F所以角EDF=角E'DF

如图,正方形ABCD中,点E,F分别在AD,BC,上,点G,H分别在AB,CD上,且EF垂直GH求EF/HG

过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三

已知:如图,在正方形ABCD中,对角线AC、BD相交于点O,E是AB上任意一点,EG⊥AC,EF⊥BD,垂足分别为G、F

没有看到图,但是做出图来可以知道,因为是正方形,所以AC⊥BD,AO=OC角BAC为45度,EG⊥AC,所以EG=AG,四边形EFOG为长方形,所以EF=GO,即EG+EF=AG+GO=AO=1/2A

如图,已知正方形ABCD的边长为12cm,点P在BC上,BP=5cm,EF⊥AP,垂足Q,与AB,CD分别交于E,F.求

∵正方形ABCD的边长为12cm,点P在BC上,BP=5cm,∴AP=AB2+BP2=122+52=13cm,过E点作EG⊥CD,垂足为G,∵∠BAP+∠AEF=90°,∠GEF+∠AEF=90°,∴

已知:如图,点A、B、C分别在三角形DEF上,且AC//DE,EF//AB,BC//DF

AB//DE,EF//BC,角BAC=角EDF,角BCA=角EFD,AC=DF,三角形ABC≌三角形DEF.

正三角形ABC和正方形DEFG如图放置,点E,F在边BC上,点D,G分别在边AB,AC上.求BC:EF.

BC:EF=(BE+EF+FC):EF=1+BE:EF+FC:EF,因为BE:EF=FC:EF=FC:FG=ctg60(如果这个条件不能用的话就不知道怎么做了,或者说你知道斜三角形的三边比例也行),结

已知:如图,点E在正方形ABCD的对角线BD上,且BE=AB,EF⊥BD,EF与CD相交于点F.求证:DE=EF=FC

连接BF,得两个直角三角形△BEF和△BCF,因为BE=AB=BC,BF是公用斜边,所以△BEF≌△BCF,于是EF=FC;又,在直角△DEF中,∠EDF=45°,那么△DEF是等腰直角三角形,DE=

已知,如图,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF

(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC

已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED.∴∠BEF=∠EDC.在△EB

如图正方形DEFG的边EF在三角形ABC的边BC上 顶点D G分别在边AB AC上 已知在三角形A

∵DEFG是正方形∴DG=DE=GF=EFDG∥EF(BC)∴△ADG∽△ABC∴DG/BC=AP/AH∵AH⊥BC∴PH=DE=DG∴DG/60=(40-DG)/40再答:DG=24∴S正方形=24

如图,已知,在正方形ABCD中,E、F分别是AB、BC上的点,若有AE+CF=EF,求:∠EDF的度数.

延长FC到G使CG=AE连接DG则∠DCG=90=∠DAB且在正方形ABCD中AD=DC则三角形ADE全等于三角形DCG则DE=DG∠CDG=∠ADE∠EDF=∠FDG=∠FDC+∠CDG=∠FDC+

已知,如图,在正方形ABCD中,点E、F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF的中点.

(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC

已知,如图,ad是△abc的角平分线,点e、f分别在ac、bc上,de//ab,ef//ad,求证:ef平分∠dec(用

证明:∵DE//AB∴∠DEC=∠BAC∵EF//AD∴∠DEF=∠DAC∵AD是△ABC的角平分线∴∠DAC=1/2∠BAC∴∠DEF=1/2∠BAC=1/2∠DEC即EF平分∠DEC【数学辅导团】

已知:如图,点E在正方形ABCD的对角线BD上,且BE=AB,EF⊥BD,EF与CD相交于点F.

连接BF你会发现△BCF≌△BEF所以EF=FC了再看△fed因为FE垂直BD所以角FED是90°又因为BD正方形是角平分线所以角BDC等于45°所以角DFE也是45°所以de=ef了

已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

∠BEF=∠CDE∠B=∠CEF=ED△BEF≌△CDEBE=CDCD=ABBE=AB∠BAE=∠BEA=45°AE平分∠BAD