如图已知△ABC≌△DBE若∠AGF=20°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:10:53
因为:AB=BC,BD=BE,∠ABD=∠CBE所以:△ABD≌△CBE由两个三角形全等可得AD=CE,∠BAD=∠BCE因为:∠BAD+∠DAC+∠ACB=90°∠BAD=∠BCE所以:∠BCE+∠
∵△ABC≌△DBE∴∠A=∠BDE,∠C=∠E∵∠BDA=∠A∴∠ADE=∠BDE+∠BDA=2∠A∵∠A+∠ADE+∠E=180°∴3∠A+∠C=180°∵∠A:∠C=5:3∴∠A=50°,∠C=
首先,我用的是如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.1,∠1=∠2,∠4=∠3,那么△ABD∽△CBE.2,得出,AB/BC=BD/BE推出BE/BC=BD/A
设它们比值为kAB/BC=kAB=kBCDB/BE=kDB=kBEAB/DB=BC/BE根据对应边成比例所以三角形ABC相似于三角形DBE
证明:(1)∵∠1=∠2,∠3=∠4(已知),∴△ABD∽△CBE(两角对应相等,两三角形相似);(2)∵∠1=∠2,∴∠1+∠DBC=∠2+∠DBC,即∠ABC=∠DBE,由(1)△ABD∽△CBE
△ABC≌△DBE,∠C=∠E,∠CBA=∠EBD,设AC,EB交于H,∠CHB=∠EHG,[对顶角]∠AGF=∠EGH=20°,[对顶角]∠HBC=180°-∠C-∠CHB=180°-∠E-∠EHG
证明:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=
如图,在△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=50°.若∠BDC=25°,AD=4,DE=根号13,则CD的长为——┄┄┄┄┄
证明:∵BDBE=ADCE=ABBC,∴△ABD∽△CBE.∴∠ABD=∠EBC.∴∠ABC=∠EBD.∵BDBE=ABBC,∴BDAB=BEBC.∴△DBE∽△ABC.
证明:∵AB⊥CD,∴∠ABC=∠DBE在△ABC和△DBE中﹛AB=DB(已知)∠ABC=∠DBE(已证)BE=BC(已知)∴△ABC≌△DBE(SAS)
【AB在∠DBE内】证明:∵⊿ABC和⊿DBE是等腰直角三角形∴AB=BC,BE=BD,∠ABC=∠DBE=90º∴∠DBC=∠EBA【两角均为∠ABD的余角】∴⊿ABE≌⊿CBD(SAS)
由△ABC≌△DBE,∴∠BDE=∠A=∠BDA,∠E=∠C,∵∠A:∠C=5:3,∴∠A:∠BDA:∠BDE:∠E=5:5:5:3,又∠A+∠BDA+∠BDE+∠E=180°,∴∠C=∠E=30°,
由已知可得△ABD∽△CBE两个三角形相似,再利用它的结论可证△ABC∽△DBE
延长ED,交AC于点H,则因为△ABC≌△DBE,∠ABC=90°所以∠C=∠E,∠E+∠BDE=90°因为∠BDE=∠HDC所以∠C+∠HDC=90°所以EH垂直于AC所以DE垂直于AC
△ABC≌△DBE,∠C=∠E,∠CBA=∠EBD,设AC,EB交于H,∠CHB=∠EHG,[对顶角]∠AGF=∠EGH=20°,[对顶角]∠HBC=180°-∠C-∠CHB=180°-∠E-∠EHG
(1)证明:如图1所示,在△ABD和△CBE中,AB=CB∠ABD=∠CBE=90°DB=EB,∴△ABD≌△CBE(SAS),∴AD=CE,∠BAD=∠BCE,∵∠BCE+∠BEC=90°,∠AEF
猪肚啊...这题有点难哈...告诉你好了,选C20°.