如图在矩形abcd中过点c作对角线db的平行线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:03:37
【BE=5?】连接AC∵AD//BC∴四边形ABCE是等腰梯形【根据平行弦所夹弧相等,等弧对等弦即腰相等】∴AC=BE=5【等腰梯形对角线相等】∵AB//DC∴∠DCA=∠CAB∵DC是切线∴∠DCA
当动点P在AB边移动时,三角形APC的底边为AP=x,高等于BC此时其面积为S=AP*BC*1/2=2x*1/2按题意有方程S=x*1/2=1/2解得x=1,当动点移动到BC边上时,三角形APC的底边
连接AC交EF于点o∵折叠时点A与点C重合,所以AE=EC∴∠EAo=∠ECo同理∠FAo=∠FCo又∵∠FAo=∠ECo∴∠EAo=∠FCo即AE‖FC,∵AF‖EC∴四边形AECF是平行四边形∴四
由△PAG∽△PCH(易证)得:PG/PH=PA/PC,由△PAE∽△PCF(易证)得:PE/PF=PA/PC,故:PG/PH=PE/PF故PG·PF=PE·PH.得证再问:还有第二问:将矩形ABCD
连结BF,因为B与点D重合,点C落在点C′处,所以BE=EDBF=DFEF=FE△DEF全等于△BFEBE=DF因为BF=DF所以BF=BE=DF=EDAE=1/2BE即AE=1/2DEAB=6DE=
△ACE是等腰三角形.根据矩形性质,AC=BD,四边形EDBC是平行四边形,BD=CE,CE=AC,△ACE是等腰三角形.
(1)∵ABCD为矩形,AF⊥AE,AB⊥CF∴AE^2=AD^2+DE^2=9+x^2AF^2=AB^2+BF^2=16+y^2∵AE^2+AF^2=EF^2=CE^2+CF^2∴9+x^2+16+
BF=AE.理由如下:∵以点B为圆心、BC长为半径画弧,交AD边于点E,∴BC=BE,∵四边形ABCD为矩形,∴∠A=90°,AE∥BC,∴∠AEB=∠FBC,而CF丄BE,∴∠BFC=90°,在Rt
证明:∵CP∥BD,DP∥AC,∴四边形CODP是平行四边形,∵ABCD是矩形,∴OC=OD,∴平行四边形CODP是菱形.
(1)如图2,∵四边形ABCD是矩形,∴AB=CD,AD=BC.又AB=9,AD=3,∠C=90°,∴CD=9,BC=3.∴.∴∠CDB=30°.∵PQ‖BD,∴∠CQP=∠CDB=30°.(2)如图
(1)OA=OC(2)∠EAO=∠FCO(3)∠AOE=∠COF以上三条推出△AOE和△COF全等,所以EO=FO又因为BO垂直且平分EF,所以BE=BF,再加上条件EF=BE所以△BEF是正三角形所
找到原题了,可以到求,解,答上搜一下,也可以追问给你连接,满意的话要采纳哦
BF=AE.理由如下∵以点B为圆心、BC长为半径画弧,交AD边于点E,∴BC=BE,∵四边形ABCD为矩形,∴∠A=90°,AE∥BC,∴∠AEB=∠FBC,而CF丄BE,∴∠BFC=90°,在Rt△
在Rt△ABD中AB=1AD=由勾股定理可得AC=BD=2又因为矩形的对角线互相平分所以OB=OA=OC=OD=1所以AB=OB=OA=1所以△AOB是等边三角形因为AF平分∠BAC所以∠BAF=∠F
(1)求证:△AB´E∽△C´GF显然,Rt△B´DG∽Rt△C´GF在Rt△B´DG和Rt△B´GD中,∠AB'E与∠DB'G
天才12347,根据题意,可知三角形APC的面积=三角形ABC的面积-三角形ABP的面积.三角形ABC的面积为:0.5×2×1=1;三角形APC的面积为:0.5×2×(x-2)=x-2;所以三角形AP
1.2或12/52.3/4或3/83.当x大于2小于等于5/12时s=6x-12当x大于5/12小于等于3时s=x当x大于3小4时s=04.10打字不易,如满意,望采纳.
1、过C‘作AB、AP的垂线交AB于G、交AP于H.由翻折可得△C’HP≌△CDP.∴HP=PD又因为AB为⊙C’的切线,G为切点,所以C’G=CP=AH.∵AD=AH+HP+PD=3,CP=√(PD