如图在矩形ABCD中m,n分别是边ad,bc的中点,e,f分别是线段
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:59:53
证明:(1)设PD的中点为E,连AE,NE,则易得四边形AMNE是平行四边形则MN∥AE,MN⊄平面PAD,AE⊂平面PAD所以MN∥平面PAD(2)∵PA⊥平面ABCD,CD⊂平面ABCD∴PA⊥C
解析:根据题意我们可以知道PA⊥PD;而平面PAD⊥平面ABCDPA=PD所以点P在平面ABCD上的射影是AD的中点又因为AD⊥CD所以PA⊥DC既PA⊥面PCD如果取PD中点为F则四边形AMNF为平
联结BD交AC于点O∵四边形ABCD是矩形∴AD∥BC,AD=BC,AO=CO,DO=BO,AC=BD∴角DAC=角ACB∵BM⊥AC,DN⊥AC∴角CMB=角DNA∴△ADN≌△MCB∴AN=MN=
证明(1)取PB中点Q,连接NQ,MQ∵Q是PB中点,M是AB中点∴MQ//PA∵N是PC中点∴NQ//BC∵PA⊥面ABCD∴PA⊥AB∴MQ⊥AB∵ABCD是矩形∴AB⊥BC∴AB⊥NQ∴AB⊥面
(1)菱形连接MN,由矩形对称性可知MN为其对称轴容易证明Rt△MNB≌Rt△MNC,且NE,NF是直角三角形斜边上的中线∴有ME=EN=NF=FM,∴四边形MENF是菱形(2)对角线相等的菱形是正方
(1)∵矩形ABCD∴AD∥CB∴∠MDB=∠NBD∵MN垂直平分BD∴BO=DO∵∠MOD=∠NOB∴△MOD≌△NOB(ASA)∴ON=OM∴BD⊥MN且BD、MN互相平分∴四边形MBND是菱形(
1.∵M,N,E分别是AB,PCPD的中点∴NE‖CD且NE=CD/2所以四边形AMNE是平行四边形,有MN‖AE∴MN〃平面PAD2.∵PA⊥平面ABCD,AE是一条斜线,AD为其在平面ABCD上的
取CD中点H,连结MH、NH,PA⊥平面ABCD,PA⊥AB,AM=BM,PN=CN,△AMP≌△BCM,MC=PM,△PCM为等腰△,MN⊥PC,PA⊥CD,CD⊥AD,CD⊥平⊥CD面PAD,
1、(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,(舍去).因为BQ+CM=,此时点Q与点M不重合.所
当x²+2x=20或x+3x=20时构成三角形解得x=√21-1或5
AP+ND=2x+x2=24 x=4 x=-6(舍去) 2 3 满足平行四边形条件是一组对
题有问题,BM=AB?如是BN=AB延长MN交BC于G(提示一下,详细过程自己补充)三角形ABM,NBM,NBC全等角ABM=角MBN=角NBC=90/3度=30度
前两问用向量法解比较简便1.建立坐标系,以D为原点,DA为X轴,DC为Y轴,DP为Z轴则各个点的坐标为P(0,0,√2),A(√2,0,0),B(√2,1,0),C(0,1,0)由中点关系,易知M,N
它是一个菱形,再问:ok再答:连MN易得MN⊥BC∴P是直角三角形MNB斜边上的中点∴PM=MP∵DM//=BN∴四边形MDNB是平行四边形∴MB=ND,MB//ND∵MP=MB/2NQ=ND/2∴M
1、因为ad//bc,mn分别为ao,do的中点,所以,mn//ad,mn//bc又因为abcd为矩形,所以ob=oc,om=on,因为角mob=角noc,所以三角形mob全等三角形noc,所以mb=
证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=12AD,CN=12BC,∴AM=CN,在△MAB和△NDC
(1)连接BD交AC与M在三角形BPD中,M、N分别是BD,PD的中点所以MN平行BPBP在面ABP内所以MN平行于面ABP(2)因为AB⊥BP,AB⊥BC所以AB⊥面BCP所以AB⊥PC必要性:又因
S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x
答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C