如图在正方形abcd中点ef分别在bc和cd上角eaf等于四十五度三角形ecf

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 18:49:04
如图在正方形abcd中点ef分别在bc和cd上角eaf等于四十五度三角形ecf
如图在正方形ABCD中点EF分别在BC和CD上AE=AF求证BE=DF

∵AB=ADAE=AF∴Rt△ABE≌Rt△ADF(HL)∴BE=DF

如图,在正方形abcd—a1b1c1d1中,e.f分别是ad.cd的中点求证ef垂直于bd1

在正方体中平面BB1D1D垂直于平面ABCD,又因为EF在平面ABCD上,所以EF垂直于平面BB1D1D,且BD1在平面BB1D1D上,所以EF垂直于BD1

如图,在正方形ABCD中,E为CD的中点,F为BC上的一点,且CF=1/4BC,试说明:AE垂直EF

因为在正方形ABCD中,E为CD中点,所以DE=EC=1/2AD因为CF=1/4BC,且BC=AD,所以CF=1/2CE因为角D=角C=90度所以直角三角形ADE相似于直角三角形ECF所以角DAE=角

如图,在正方形ABCD中,AB=4,E为AD中点,F在CD上BE垂直于EF.求DF的长!

ED=1/2AB∠A=∠D=90°∠DEF=∠ABE∴△ABE∽△DEF∴DF=1/2AE=1/4AB=1自己可以做的,就不要在百度上问

如图在正方形ABCD中,E为AB中点,F是BC上一点,且BF=1/4BC,求证DE⊥EF

令BF=a则BE=AE=2aAD=4a所以DE=2√5aEF=√5a直角三角形CFD中CF=4a,CF=3a所以DF=5a所以DF²=DE²+EF²所以角DEF是直角所以

已知如图:在正方形ABCD中,EF为AB,BC中点,DF,CE交于M求证:AD=AM

延长CE交DA延长线于G,可以证明三角形DCF、CBE、GAE全等,得角G=CDF所以角G+GDM=90度,故角GMD=90度,AG=ADAM是中线,AM=AG=AD

如图,在正方形ABCD中,E为ab的中点,f为bc上的一点,且bf=4分之一bc,求证:de垂直ef

证明:∵ABCD是正方形∴AD=AB=BC,∠A=∠B=90º∵AE=BE=½ABBF=¼BC∴AE/AD=BF/BE=½又∵∠EBF=∠DAE=90º

如图,在正方形梯形ABCD中,AD平行BC,E为CD的中点,EF平行AB交BC于点F.求证BF=AD+CF

过点D作DG∥AB,交BC于G,∵AD∥BC,DG∥AB∴四边形ABGD为平行四边形则AD=BG∵DG∥AB,EF∥AB∴EF∥DG∵E为CD的中点∴EF为△CDG的中位线∴GF=CF∴BF=BG+G

如图,在正方形ABCD中,E是BC中点,F是CD上一点,AE垂直于EF.求证:三角形ABE相似于ECF

是相似于吧?因为 正方形ABCD所以 角B=角C=90度因为 AE垂直EF所以 角AEF=90度所以 角B=角C=90度=角AEF所以 角1

如图,在正方形ABCD中,E为AD中点,EF⊥EC交AB于F,连接FC ,求证△AEF∽△ECF

证明:延长BA和CE交于点GE为AD中点则AE=1/2AD=BCFE⊥GCFE是BC的垂直平分线所以△FGE≌△FCE∠G=∠FCE∠G=∠FEA(等角的余角相等)∠FEA=∠FCE∠EAF=∠FEC

如图,在正方形ABCD中,F为DC的中点,E为BC上的一点,且EC=1/4BC,那么AF垂直EF.

CE=1/4*BCBE=3/4*BCAF^2=AD^2+DF^2=AD^2+1/4*CD^2=5/4*AD^2EF^2=EC^2+FC^2=1/16*BC^2+1/4*DC^2=5/16*AD^2AC

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=1/4BC.求证:AE⊥EF.

连接AF设AB=AD=BC=CD=4∴E为CD的中点DE=CE=1/2CD=2∵CF=1/4BC=1∴BF=3∴勾股定理:AE²=AD²+DE²=4²+2

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=?BC,试说明AE⊥EF.

在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=(1/4)BC,试说明AE⊥EF.因为,在△ADE和△ECF中,∠ADE=90°=∠ECF,AD/DE=2=EC/CF,所以,△ADE∽△E

已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.

证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG

如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=1/4BC.求AF垂直EF.

为了计算简单,设正方形边长为4a,则CF=DF=2a,CE=a,BE=3a∴AF^2=AD^2+DF^2=(4a)^2+(2a)^2=20a^2EF^2=CE^2+CF^2=a^2+(2a)^2=5a

如图,在正方形ABCD中,E为AD中点,EF⊥EC交AB于点F,连接FC(AB>AE),三角形AEF相似三角形EFC吗

相似,画图哦我们设边长为CD=AD=2则AE=ED=1,根据勾股定理EC=√5易证△AEF∽△DCE∴AF=1/2再勾股EF=√5/2再成比例一下外加一个直角自己把过程丰满一下设边长时多加一个比例系数

如图正方形ABCD中E,F是BC,DC的中点求证AE⊥EF

稍等再答:证明:将AE与DF的交点设为O∵正方形ABCD∴AD=CD=BC,∠ADC=∠C=90∴∠DAE+∠AED=90∵E是DC的中点,F是BC的中点∴DE=CD/2,F=BC/2∴DE=CF∴△