如图在正方形,o是对角线的交点过点o作oe垂直of
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:22:46
1AB1‖DC1,AD1‖BC1∴面AB1D1‖面BDC1.OC1∈面BDC1.∴.C1O‖面AB1D12,设P为ABB1A1中心.∴CB⊥ABB1A1.∴AB1⊥BC.又AB1⊥A1B.∴AB1⊥面
连接AP,BS∵是正方形∴对角线互相平分且四边相等∴AO=BO,SO=PO∵∠POC+∠SOC=90°∠SOD+∠SOC=90°∴∠POC=∠SOD∵∠AOP+∠POC=∠BOS+∠SOD=180°且
我来、..1.EF=52.面积为49/5
(1)证明:∵∠AOM+∠BOM=90°,∠BON+∠BOM=90°,∴∠AOM=∠BON,∵四边形ABCD和四边形OEFG都是正方形,∴AO=BO,∠OAM=∠OBN=45°,在△AOM和△BON中
1设顶面A1B1C1D1的中心(即对角线的交点,类似于O点)为点01.连接A和点O1.易证,AOC1O1为平行四边形,所以线A01平行于线C1O由于线A01属于面AB1D1,而A01平行于C1O所以C
(I)证明:取CD中点M,连接OM.在矩形ABCD中,OM∥且=1/2BC,又EF∥且=1/2BC,则EF∥且=OM.连接EM,于是四边形EFOM为平行四边形.∴FO∥EM.又因为FO不在平面CDE,
EF垂直平分AC则AF=FCAE=EC又三角形AOF与三角形EOC为直角三角形,AO=OC,角FAO=角ECO三角形AOF≌三角形EOCAF=EC又AF∥EC所以四边形AECF是菱形再问:AF=且∥E
在菱形ABCD中OA=OB=OC=OD又DE//AC,CE//BD∴DE//OCCE//OD∴四边形OCED为平行四边形又OC=OD∴四边形OCED为菱形(一组邻边相等的平行四边形是菱形)
在△BON与△MOD中,ON=OM;BO=OD,角BON=MOD(对顶角相等),所以△BON与△MOD全等,则角NBO=MDO,所以BN//MD,同理证明:在△BOM与△NOD全等,BM//ND,所以
选B 没那么麻烦. 如图,<BAC=90度 <BOC=90度 BC=AC 所以<1=<2=90度 <3+<
(I)证明:取CD中点M,连接OM.EM.在矩形ABCD中,OM∥..12BC,又EF∥..12BC,则EF∥..OM.连接EM,于是四边形EFOM为平行四边形.∴FO∥EM.又因为FO不在平面CDE
证明∵平行四边形ABCD∴BO=ODAO=OC∵MN为AO、OC中点、∴MO=NO(加上前面的BO=OD)就可得对角线互相平分∴四边形BMDN是平行四边形
晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?
两图形重叠部分面积无变化;规律:两图形重叠部分面积等于正方形ABCD面积的1/4再问:有过程吗再答:过点O分别作OE、OF垂直AB、BC于点E、F,再证直角三角形OEM全等于直角三角形OFN即可。
分析你听哦设OE交AB于M,OG交BC于N,不难证明△OMB≌△ONC其实在转动过程中重叠部分的面积始终=△OBC的面积=正方形面积的4分之1所以(1)y=4x图像是过原点和(1,4)一条射线,原点除
提问何在?
∵平行四边形abcd∴ab‖cd∠cad=∠2∵∠1=∠2∴∠cad=∠1∴ao=do同理bo=coac=bd∴四边形abcd是矩形(对角线相等的平行四边形是矩形)
证明:连接AE,如图.∵四边形OCDE是平行四边形,∴DE∥OC,DE=OC∵O是平行四边形ABCD的对角线AC与BD的交点,∴AO=OC.∴DE∥OA,DE=OA∴四边形ODEA是平行四边形,∴OE
证明:∵平行四边形ABCD∴AD∥BC,AD=BC,AO=CO∴∠DAO=∠BCO∵∠AOE=∠COF∴△AOE≌△COF(ASA)∴AE=CF∴平行四边形AECF(对边平行且相等)