如图在圆o中ab是直径,点D是圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:58:09
如图在圆o中ab是直径,点D是圆
如图,已知AB是圆O的直径,AB=10,点C,D在圆O上,DC平分∠ACB,∠EAC=∠D.

这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠

如图,在三角形ABC中,AB=AC,以AC为直径作圆O交BC于点D,作DE垂直AB于点E,求证:DE是圆O的切线

证明圆的切线的方法:⑴、圆心到直线的距离等于半径;⑵、过半径外端且垂直于半径.此题可用第二种方法解决,即:证明DE⊥OD.证法如下:连结OD,所以AD⊥BC,由于AB=AC,利用等腰三角形的“三线合一

已知,如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,作DE⊥AC于点E,求证:DE是圆O的切线.

连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B

如图,AB是圆O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°

连接OC∠CAB=30°OA=OC所以∠COD=60°又OB=BD所以OD=2OC所以OC垂直于CD所以DC是圆O的切线

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于D,过点D作DE⊥AC,交AC于E.DE是圆O的切线么?为什么

连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B

如图,已知AB是圆O的直径,点C、D在圆O上,且AB=6,BC=3.

(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,

如图13-1,在圆O中,AB是直径,C是园O上一点,∠ABC=45°,在等腰直角三角形DCE中,点D

1证明∵AB是直径∴∠BCA=90°而等腰直角三角形DCE中∠DCE是直角∴∠BCA+∠DCE=90°+

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,过点D作DE⊥AC于E,求证:DE是圆O的切线

我可能证明的不对,但是还是说一下吧.麻烦在草纸上重新画图证明:连接DO、AD得DO为圆O的半径∴∠ABD=∠ODB又∵AB=AC∴∠ABD=∠ACB∵DE⊥AC∴∠ACB+∠EDC=90°∴∠BDO+

如图,AB是圆O的直径,点D在圆O上,∠DAB=45°,BC平行AD,CD平行AB

(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)分析:(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)

如图,在圆O中,C,D是直径AB上两点,且AC=BD,MC垂直AB

1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就

如图,在三角形ABC中,以AC为直径作圆O交BC于点D,交AB于点G,且D是BC中点,DE垂直AB,垂足为D,

(1)证明:连结OD、CD,∵BC是直径,∴CD⊥AB,∵AC=BC,∴D是AB的中点,又O为CB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∴EF是⊙O的切线再问:第2小题呢?

如图在圆o中,ab为直径,bc与圆o相切于点B,连接co,AD平行于oc且交圆o于点D,求证:cD是圆o的切线

连接BD交OC于E,由于AD//OC,所以BE/DE=Bo/AO=1,所以E是BD中点,因为三角形BDO是等腰三角形,所以OC垂直于BD,即使OC是BD的垂直中心线,所以CB=BD,所以三角形BCO全

如图,在圆O中,AB是圆O的直径,OC⊥AB,D是CO的中点

连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F

(1)证明:连接AD、OD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴AD垂直平分BC,即DC=DB,∴OD为△BAC的中位线,∴OD∥AC,而DE⊥AC,∴OD⊥DE,∴DE是⊙

如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点E,交BC于点D.求证 (1)点D是BC中点 (2)△BEC

第一个问题:∵AB是⊙O的直径,∴AD⊥BC,又AB=AC,∴BD=CD.第二个问题:∵A、B、D、E共圆,∴∠CBE=∠CAD,又∠BCE=∠ACD,∴△BEC∽△ADC.第三个问题:由割线定理,有

如图,在△ABC中,AB=AC=4,D是线段BC的中点,以AB为直径作圆O,试判断点D与圆O的位置关系,并说明理由.

d在圆上∵ab=ac,bd=cd∴∠adb=90°(三线合一,当然你不用写)∴d在以ab为直径的圆o上