5阶行列式D=det
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:11:51
三阶矩阵特征值不超过三个,重根按重数算,现在既然知道-1、-2、-3是A的特征根,那么由于所有特征根的乘积正好等于A的行列式(特征根的性质),可见det(A)=-6A+4I的三个特征值分别是3,2,1
设B=A^2,那么B+3A=0,3B+A=0,解得A=0,B=0,所以|A|=0.再问:Ϊʲô�����ҳ�A^-1��������������0���������AA^-1=E再答:�϶����ˣ�
C正确.det(A)=0,说明A的列向量组线性相关,所以(C)正确.再问:你扣扣多少?再答:1055548932
答案是(-1)的n+1次方再乘以(n-1)*(2的n-2次方)所求行列式=012...n-1101...n-2210...n-3......n-1n-2...0依次作:ri-r(i+1),i=1,2,
根据行列式的性质可得||B|A|=|B|^5|A|=(2^5)(1/3)=32/3.再问:能问一下为甚麽会出现2的5次方吗?解释的详细一点可以吗?再答:|B|A=2A就是用2去乘矩阵的每一个元素,这样
det(AA^T)=det(A)det(A^T)=9det(AA^*)=det(det(A)E)det(A^*)=[det(A)]^4=81再问:第二个是多少啊,算不出来么再答:det(A^*)=[d
对于n阶矩阵A而言,一个数λ乘A是λ乘A中的每个元素.从行列式而言,可以从一行(或一列)提取公因子到行列式外面计算,这样从每一行都提出公因子λ后,一共提出了n个λ相乘.
是不是该这样.det(Aij)=det(3a2a1-2a2)+det(2a3a1-2a2)=0+det(2a3a1-2a2)=-det(a12a3-2a2)=det(a1-2a22a3)=-4det(
选C,这个时候提取系数的话需要阶数的次方.
原式=(-2)³×detA=-8×(1/2)=-4
若n阶行列式det(aij)中为零的项多于n∧2-n个则行列式中至少有一行的元素都是0所以行列式等于0再问:有没有具体点的过程啊再答:假如没有零行,则每行最多n-1个0所以为零的项最多有n(n-1)个
determinant[di'tə:minənt,di'tə:mənənt]再问:这样读不是太麻烦了吗,你们上数学课老师是这么读的吗?再答:没有任何人
所求行列式=012...n-1101...n-2210...n-3......n-1n-2...0依次作:ri-r(i+1),i=1,2,...,n-1-111...1-1-11...1-1-1-1.
A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1
AC为对角矩阵行列式时,det([AB;CD])的值是否与行列式det(A)*det(D)-det(B)*det(C)是相等的.因为det([AB;CD]=det(A)*det(D)-det(B)*d
行列式det[3]——既然是一阶行列式,它的值当然是3!
计算错误[I-I,OI].[(A+I)O,OI].[IO,II]=[A-I,II].不是[I-I,OI].[(A+I)O,OI].[IO,II]=[AO,II].
1、楼主的题,不是老师出错了,就是书上写错了.100%错了!行列式=determinant,一定是方阵才可以计算.2、楼主写出的是一个矩阵,是(1×9)的矩阵(Matrix),矩阵只是数字的排列,一个
det(A-I)=det(A-I)?自己等于自己?再问:det(A-I)=det(A+2I)=det(3A+2I)=0打错了~再答:det(A-sI)=0是一个关于s的三阶方程,根据上面式子可以得到它
A、B均为n阶方阵,则必有det(A)*det(B)=det(AB)=det(B)det(A),因而选A而(A+B)的转置是等于A的转置加B的转置.对于B:举个例子可知是错的:A={10,01},B=