如图在rt三角形abc中角c等于90度ac等于4若平移距离为2求四边形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:57:25
如图在rt三角形abc中角c等于90度ac等于4若平移距离为2求四边形
如图 在rt三角形abc中 角acb等于90度 a=5 c=13 求b

∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/

如图,在Rt三角形ABC中,角C等于 90,AC=8.BC=6圆O为三角形ABC的内切圆

圆半径2,OG为根号5再问:怎么算←再答:圆半径等于(AC+BC-AC)/2再问:OG呢再答:三角形OGF中OF=2,FG=1,所以OG为根号5

.如图在rt三角形abc中 c 90度 AC=2 CB=3..

1、BC垂直于EF,BC垂直于AC,所以EF//AC,因为AE//CF.SO,EACF是平行四边形.Y=X*2.2、AB=√13,如果四面行EACF能为菱形,则EB/AB=DB/BC,得BD=3-6/

如图,在Rt三角形ABC中,角C=90度,AD平分角BAC,DE垂直平分AB.

  因为  AD平分角BAC    所以     ∠cad=∠dae    因为 

如图,RT三角形ABC中,角C=90,

证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故

如图在rt三角形abc中,角c=90度,ab等于10厘米.

题目:如图,在RT△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s..同时点Q从点B出发沿B-C-A方向向点A运动,速度为2cm/s,

如图,在Rt三角形ABC中,角C=90度,CB=CA

∠C=90°CB=CA=a勾股定理AB=√(a²+a²)=√2a

如图,在Rt三角形ABC中,CA>CB,角C=90度,四边形CDEF...求三角形ABC的三

S=Seda+Sbfe+Scdef=(DE^2/BC^2)S+(EF^2/AC^2)S+441=(441/a^2)S+(441/b^2)S+441...(1)S=Sakl+Sbmn+Sckn+Sklm

河南中考,如图 在rt三角形abc中 角c=90度 角B=30度

2≤AD<3∠ABC=30°∴AC=二分之一AB=3要使D到BC的距离最短.就是过D向CB做垂直于E点.此距离是最短的又因为AD=ED设AD的长为x则ED=x,BD=6-x∠B=∠B,∠BED=∠C=

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图,在Rt三角形ABC中,角C=90度,BD是三角形ABC的角平分线,求角CDB的度数

∠CDB的度数等于90°减去∠CBD的度数(即∠CBA度数的一半)再问:过程再答:���������û��������ݣ�ֻ����ô�㡣再问:啊对啊忘了打清楚角ABC=2角ABD平分角ABC角C=9

如图,在RT三角形ABC中,角C等于90度,AB,BC,CA的长分别为c,a,b,求三角形ABC的内切圆半径

回答:设圆O与AB切于点D,与BC切于点E,与AC且于点F则AD=AF,CF=CE,BD=BE且AD+BD=cAF+CF=bCE+BE=a可得r=CE=CF=(a+b-c)/2再问:你给个图我再问:不

如图 在rt三角形abc中,角c等于45° 如图,在rt三角形abc中,角c等于45°,角cab的平

如图,在Rt三角形abc中,角c等于90度,角cab,角abc的角平分线ad,bd交与点o,求角adb的度数∵∠C=90°,∴∠BAC+∠ABC=90°,∵AD、BD分别平分∠BAC和∠ABC,∴∠B

在rt三角形abc中 角c等于90度

AC/BC=BC/DC所以△ABC∽△BDC

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

已知,如图,在RT三角形ABC中,

求证啥东西?麻烦采纳,谢谢!

已知:如图在Rt三角形ABC中, . 帮帮忙 ~

连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的