如图在rt三角形abc中角abc等于90度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:05:57
如图在rt三角形abc中角abc等于90度
如图 在rt三角形abc,角acb=90度,cd是斜边ab上

解题思路:根据题意得出每对三角形中的两组内角相等,可得三角形相似解题过程:解:有三对三角形相似,即:△ACD∽△CBD△ACD∽△ABC,△CBD∽△ABC理由:①∵CD⊥AB,&there

如图,在Rt三角形ABC中,角C=90度,AD平分角BAC,DE垂直平分AB.

  因为  AD平分角BAC    所以     ∠cad=∠dae    因为 

相似三角形:如图,在等腰RT三角形ABC中,AB=1,∠A=90°

因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A

如图在rt三角形abc中,角c=90度,ab等于10厘米.

题目:如图,在RT△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s..同时点Q从点B出发沿B-C-A方向向点A运动,速度为2cm/s,

三角形相似证明,如图,在Rt三角形abc中,角acb等于90度cd垂直于ab

(1)因为,CD⊥AB则,∠ACB=∠CDB=90°即,∠A+∠ABC=∠BCM+∠ABC=90°所以,∠A=∠BCM①因为,CD⊥AB,DH⊥BM则,∠CDB=∠BHD=90°即,∠DBM+∠EDB

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图,在RT三角形ABC中,角C等于90度,AB,BC,CA的长分别为c,a,b,求三角形ABC的内切圆半径

回答:设圆O与AB切于点D,与BC切于点E,与AC且于点F则AD=AF,CF=CE,BD=BE且AD+BD=cAF+CF=bCE+BE=a可得r=CE=CF=(a+b-c)/2再问:你给个图我再问:不

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

如图,1已知rt三角形abc中ab=ac角abc=

ight-angledtriangle的缩写直角三角形又AB=AC则角A为直角为90°则剩余两个角都为45°则角ABC=45°

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

已知,如图,在RT三角形ABC中,

求证啥东西?麻烦采纳,谢谢!

已知:如图在Rt三角形ABC中, . 帮帮忙 ~

连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45

如图,在Rt三角形ABC中,角B等于90°,BC大于AB.

BD=DE;理由:过P作PF⊥BD于F,四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,{∠ADB=∠BFPAB=BP

如图在rt三角形abc中,ab等于ac,角bac等于90度,d为bc的中点.

(1)相等,因为直角三角形斜边中线等于斜边一半,故AD=1/2BC=CD=DB(2)等腰Rt△DMN连接AD,∵AN=BM,角NAD=角DBM=45°,AD=BD∴△NAD全等于△MBD(SAS)∴D

如图,在RT三角形ABC中,角AVB=RT角,CD垂直AB于D,AD=8,BD=4,求SINA的值

CD^2=BD*CD=8*4=32AC^2=AD^2+CD^2=8^2+32=96AC=4√6所以:SINA=CD/AC=32/(4√6)=8/√6

如图,在Rt三角形ABC中,角ABC等于90度,CD垂直于AB,

相等,因为共圆弧对应角相等,即角DFE=角BCD,角BCD=角BAC.再问:是要求相似三角形吗再答:不需要。

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC