如图圆o的半径为5ab是弦半径oc垂直ab于o

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:49:11
如图圆o的半径为5ab是弦半径oc垂直ab于o
如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是______.

连接AO,∵半径是5,CD=1,∴OD=5-1=4,根据勾股定理,AD=AO2−OD2=52−42=3,∴AB=3×2=6,因此弦AB的长是6.

已知⊙O的半径为5,AB为弦,P是直线AB上一点,PB=3,AB=8,则OP为(  )

如图,作OM⊥AB与M,∵AB=8,∴BM=12AB=12×8=4,∵PB=3,∴PM=1,P′M=7,在直角△OBM中,OM=OB2−BM2=3;在Rt△OPM中,OP=OM2+PM2=10.在Rt

已知圆O的圆心为O,半径为3,点M为圆O内的一个定点,OM=根号5,AB,CD是圆O的两条相互垂直的弦,垂足为M.

1、过O做垂直于弦AB的垂线,交AB与E,形成直角三角形OAE,可知OE=根号5,说明OE就是OM,说明CD为直径,四边形ABCD面积等于三角形ACD和三角形CBD之和,等于AB与CD乘积的一半,即0

如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP

设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²

如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是(  )

作ON⊥AB,根据垂径定理,AN=12AB=12×6=3,根据勾股定理,ON=OA2−AN2=52−32=4,则ON≤OM≤OA,4≤OM≤5,只有C符合条件.故选C.

已知⊙O的半径为5cm,弦AB长6cm,则弦AB中点到劣弧AB中点的距离是______.

连接OB,过O作OD⊥AB于D,交弧AB于C,如图,∵OD⊥AB,OD过O,∴AD=BD,弧AC=弧BC,AD=BD=3cm,即CD的长是弦AB中点到劣弧AB中点的距离,在Rt△ODB中,由勾股定理得

如图,已知圆O的半径为r,弦AB垂直平分半径OC,则弦AB长为

勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的

如果⊙O半径为5cm,弦AB//CD,且AB=8cm ,CD=6cm,那么AB与CD之间的距离是__________cm

本题要注意,有两种情况:第一种:当AB,CD在圆心的两侧时,过O作OE⊥AB,垂足为E,交CD与点F,因为AB//CD,OE⊥AB所以OF⊥CD由垂径定理得:AE=1/2AB=4在Rt△OAE中,由勾

已知圆O的半径OA长为5,弦AB的长为8,C为AB的中点,点P是射线AO上一点

第一个问题:过C作CE∥AO交BO于E.∵CE∥AO、AC=BC,∴CE=AO/2=5/2、BE=EO=BO/2=5/2,∴DE=EO-DO=5/2-DO.∵CE∥OP,∴△CED∽△POD,∴CE/

已知圆o的半径为5,AB是弦,P是直线AB上的一点,PB=3,AB=8,则tan∠OPA=?

3做O到AB的垂线OC,OA=5,AC=4,则OC=3,勾股定理.PC=BC-PB=1

已知,在圆O中,弦AB的长是半径是半径OA的根号3倍,圆O的直径为2,C为弧AB的中点,求四边形O

很高兴为您解答.可知:则AD=BD=(r根号3)/2直角三角形AOD中解得OD=r/2因此OD=DC=r/2所以四个直角三角形AOD,BOD,ADC,BDC全等所以四条边相等所以为菱形则面积=根三/2

AB是圆O直径,大圆半径为10厘米,小圆半径为6厘米,求阴影部分的周长

6*2*3.14÷2=18.84cm这是小圆的周长的一半10*2*3.14÷2=31.4cm这是大圆的周长的一半(10-6)*2=8cm18.84+31.4+8=58.24

已知圆O的半径为5,弦AB的长也是5,求圆心O到AB的距离

如图,连结OAOB∵AB=AO=BO∴等边△BAO∴∠DAO=60°∵AO=5∴OD=2分之5倍根号3不懂接着问我再问:图呢再答:

已知圆O的半径为4,弦AB的长等于半径,则圆心O到AB的距离

运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3

AB是圆O的弦,P是圆O的弦AB上的一点,AB 10cm,AP 4cm,OP 5cm,则圆O的半径为()cm

首先要知道,圆心到弦的垂线是弦的垂直平分线.那么过圆心作弦的垂线,即得一个由OP和垂线组成的直角三角形.OP=5,底边=5-4=1,那么垂线可通告毕氏定理算得.既然垂线出了,由半径和垂线组成的大三角形

已知圆O的半径为5弦AB=6是直线AB上一点 PB=2则tan角0PA的值为

连接OB、OP,做OD⊥AB于DOB=5,AB=6,PB=2DB=1/2AB=3DP=DB-PB=3-2=1OD=根号(OB^2-DB^2)=根号(5^2-3^2)=4tanOPA=OD/DP=4/1

1.已知AB是半径为1的圆O的一条弦,且AB=a

第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..

已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,则⊙O的半径是(  )

根据垂径定理,得半弦长是4cm.再根据勾股定理,得其半径是5cm.故选C.

在半径为1的⊙O中,弦AB=1,则AB的长是(  )

如图,作OC⊥AB,则利用垂径定理可知BC=12∵弦AB=1,∴sin∠COB=12∴∠COB=30°∴∠AOB=60°∴AB的长=60π180=π3.故选C.