如图四边形ABCD中,M,N分别为AD,BC中点连BD求MN
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:01:37
ME,FN分别为三角形DAB,CAB的中位线,所以ME平行且等于(1/2)AB,FN平行且等于(1/2)AB,所以ME平行且等于FN,所以MENF为平行四边形,所以MENF的对角线EF,MN互相平分.
证明:(1)设PD的中点为E,连AE,NE,则易得四边形AMNE是平行四边形则MN∥AE,MN⊄平面PAD,AE⊂平面PAD所以MN∥平面PAD(2)∵PA⊥平面ABCD,CD⊂平面ABCD∴PA⊥C
不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA
证明(1)取PB中点Q,连接NQ,MQ∵Q是PB中点,M是AB中点∴MQ//PA∵N是PC中点∴NQ//BC∵PA⊥面ABCD∴PA⊥AB∴MQ⊥AB∵ABCD是矩形∴AB⊥BC∴AB⊥NQ∴AB⊥面
在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD原题是这样的吧!童鞋,请不要重复发帖子啊!浪费时间!证明:连结BM,DM在Rt△ABC中,点M是斜边AC的
因为M,N,E,F分别为AD,BC,BD,AC的中点所以ME=0.5AB=FN,MF=0.5CD=EN因为AB=CD所以ME=FN=EN=MF所以四边形MENF为菱形
将三角形DCN绕点D顺时针旋转,使得CD与AD重合.设点N的新位置为点P.因为角A+角C=180度,所以P在直线AB上.三角形DMN与三角形DMP全等(三边对应相等),所以角MDN是角ADC的一半.(
∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B
证明:连接A,C连接B,D交AC于O点,令AC与MO的交点为S∵AD=AB,DC=BC,AC=AC∴∠AOD=∠AOB=90°∵M,N.P,Q分别是AB,BC,CD,DA的中点∴MQ‖BD,QP‖AC
因为四边形ABCD为平行四边形所以AD=BC,AD平行于BC又因为AE=CF所以ED=BF因为M\N为ED、FB的中点所以EM=FN且EM平行于FN所以四边形ENFM为四边形
证明:因为四边形ABCD是平行四边形所以AB=CD,∠ABD=∠CDB又因为BN=DM所以△ABN≌△CDM得到AN=CM同理可得,AM=CN所以,四边形ANCM是平行四边形
四边形,mc?再问:四边形mnef 急急急再答:
证明:(1)如图,连接DN,∵四边形ABCD是正方形,∴DN⊥AC∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC又DN∩DF=D,∴AC⊥平面DNF∵GN⊂平面DNF,∴GN⊥AC(2)取DC
◇根据三角行中位线原理:PM平行与BD,等于BD的二分之一;NQ也平行于BD,等于BD的二分之一.所以PM平行且相等于NQ,同理PN平行且相等于MQ.所以是平行四边形.又因为AC=BD,所以这个平行四
(1)连接BD交AC与M在三角形BPD中,M、N分别是BD,PD的中点所以MN平行BPBP在面ABP内所以MN平行于面ABP(2)因为AB⊥BP,AB⊥BC所以AB⊥面BCP所以AB⊥PC必要性:又因
证明:连接AC取AC中点P,∵M,N分别是AD,BC的中点∴NP‖AB,PM‖CD,NP=AB/2,PM=CD/2∠PMN=∠NFC,∠PNM=∠BEN∵AB=CD∴NP=PM∴∠PNM=PMN∴∠B
分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB
如图,∵M、N是AB、CB中点,∴MN∥AC且MN=AC/2(三角形中位线定理),同理,PQ∥AC,且PQ=AC/2,∴MN∥PQ,且MN=PQ∴四边形MNPQ是平行四边形(一组对边平行且相等的四边形
抄错了吧,应该还有CE=BE.连结AC.S△ADF=S△ACF、S△ACE=S△ABE所以,S△ACE=S△ABE=n-m四边形ABCD面积=2m+(2n-m)=2n.再问:补充一下:CE=2EB,现