如图以三角形abc中的ab,ac为边分别向外作正方形.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:03:36
如图以三角形abc中的ab,ac为边分别向外作正方形.
如图,以Rt三角形ABC的顶点A为直角顶点,AB.AC为直角边,以三角形ABC分别作等腰Rt三角形ABD,

显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.

如图,三角形ABD、三角形ACE、三角形BCE是分别以三角形ABC的边AB、AC、BC为一边的等边三角形.求证四边形AD

按图形,ΔACE是等边三角形.证明:∵ΔACE、ΔBCF为等边三角形,∴CB=CF,CA=CE,∠BCF=∠ACE=60°,∴∠BCF+∠ACF=∠ACE+∠ACF,即∠BCA=∠FCE,∴ΔBCA≌

如图任意三角形ABC分别以AB,AC为腰,以A为顶角的顶点向三角形ABC的两侧作等腰三角形ABM,等腰三角形ACN,且

AB=AM,AN=AC,∵∠ANC=∠ABM,∴∠NAC=∠BAM,【三角形内角和180°】∴∠NAB=∠CAM【两边同减∠BAC】可得△NAB=△CAM(SAS)∴∠NBA=∠CMA若∠ANC=∠A

已知如图分别以三角形abc的边ab,ac为边,以a点为直角顶点,在三角形abc外部作等腰直角三角形abe和acd.

1.CE=BD,△BAD≌△EAC,2.延长AM到P使MP=AM,连接CM(或BM),则三角形ACP≌△DAE,∴AP=DE,即2AM=DE.3.过D作AE的平行线交AN的延长线与Q,可得三角形ADP

已知:等腰RT三角形ABC中,角A=90度,如图8-1,E为AB上任意一点,以CE为斜边等腰R

以CE为斜边作等腰直角三角形CDE连接AD则有AD平行于BC若将等腰直角三角形ABC改为正三角形ABCE为AB边上任一点三角形CDE为正三角形连接AD上述结论还成立吗

三角形 如图在三角形ABC中,以AB,AC边为边向外做等边三角形ABD和等

证明:连接CD,BE∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE,∠BAD=∠CAE=60°∴∠DAC=∠BAE∴△ACD≌△ABE∴CD=BE∵P是BD中点,M是BC中点∴PM是△BC

如图,三角形ABC中,AG垂直BC于点G,以A为直角顶点,分别以AB、AC为直角边,向三角形ABC外作等腰Rt三角形

据题意知,∠EAB=90度,∠PAE+∠BAG=90度,∠PAE+∠PEA=90度,所以∠BAG=∠PEA∠PAE=∠ABG,又EA=BA,故△BAG≌△AEP,得PE=AG,同理QF=AG,所以PE

如图,在三角形ABC与三角形DEF中,∠A=∠D,AB/DE=AC/DF,求证:三角形ABC相似于三角形DEF

两边对应成比例,夹角相等,已经相似了.再问:按其他证明方法证明再答:还有一种方法就是把△DEF搬到△ABC上进行证明了,∵∠A=∠D,把△DEF搬到△ABC上,使A与∠D重合,且DE放在AB上,自然D

如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是(  )三角形.

∵△ABC旋转得△AB′C′,∴AB=AB′,∵旋转角是60°,∴∠BAB′=60°,∴△ABB′是等边三角形.故选B.

如图,在三角形ABC中,AB=AC=1,角BAC=2a,请根据图中的提示,利用面积方法正面

S⊿ABC=AB×AC×Sin2α÷2S⊿ABC=BC×h÷2=BC×ABcosα÷2BC=ABsinα×2AB=AC=1Sin2α=BC×ABcosα=2sinαcosα

如图,把三角形ABC沿边AB平移到三角形A'B'C'的位置,它们重叠部分(即图中的阴影部分)的面积

用面积法求解即可简单得到答案为√2/2给你全部答案再问:请快点给我解答过程再答:设△ABC高度为h,△A'BD(小三角形)CB和A′C相于E1、特殊值法设△ABC为等腰直角三角形,很简单得到答案(解答

如图8,把三角形ABC沿AB边平移到三角形A'B'C'的位置,它们重叠部分(即图中的阴影部分)的面

根号2-1再问:请你写过程再答:△A'BD相似于△ABC,相似比为1:√2。AB=√2,AA'=√2-1

如图,以三角形ABC的两边AB、AC分别向外作等边三角形ABD、等边三角形ACE、连接BE、CD,并相交于O点.求证:A

证明:∠DAB=∠CAE=60°,则∠DAC=∠BAE;(等量加等量和等)又AD=AB;AC=AE.故⊿DAC≌ΔBAE(SAS),BE=DC.则:点A到BE和DC的距离相等.(全等三角形对应边上的高

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC