如图一若bc为○o的直径ab=6求ac bd cd的长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:04:16
证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O
1.∵AB=AC,∠A=45°∴∠C=67.5°∵AB为直径∴∠ACB=90°∴∠EBC=90°-67.5°=22.5°2BD=CD证明:连接AD∵AB是直径∴AD⊥BC∵AB=AC∴BD=CD(等腰
题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC
作DH⊥AB,垂足为H,则∠EDH+∠E=90°,又DE⊥OD,∴∠ODH+∠EDH=90°.∴∠E=∠ODH.∵AD=DC,AC=8,∴AD=4.在Rt△ADB中,BD=3,由三角形面积公式得:AB
没图不知道DA,BC在哪没法证把图给出来就好了
连接BE∵BC为⊙O的切线∴∠ABC=90°∵AB为⊙O的直径∴∠AEB=90°∴∠DBE+∠OBE=90°,∠AEO+∠OEB=90°∵OB=OE,∴∠OBE=∠OEB∴∠DBE=∠AEO∵∠AEO
证明:连接BE∵AE为⊙O的直径∴∠ABE=90°∵AD⊥BC∴∠ADC=90°∵弧AB=弧AB∴∠E=∠C∴△ABE∽△ADC∴AB/AD=AE/AC∴AB*AC=AD*AE弧AB=弧AB指的是同弧
证明:(1)连接AD,OD∵AB是⊙O的直径∴∠ADB=90°∴∠ADC=90°∵E是AC的中点∴DE=AE(直角三角形斜边中线等于斜边的一半)∴∠EDA=∠EAD∵OD=OA∴∠ODA=∠OAD∴∠
连接CD则CD垂直ABCD垂直平分AB,平分角BCABD=6CD=8连接BG则BF垂直AC,BG平行EFBG*AC=AB*CDBG=12*8/10=9.6CG方=BC方-BG方=10方-9.6方=19
应该取CD的中点E,作EF⊥AB于点F因为AB⊥AD,AB⊥BC,EF⊥AB所以EF平行AD平行BC因为点E是CD的中点(上面已写,可以省略)所以EF为等腰梯形ABCD的中位线(直接取中位线是不行的)
3cm根据圆的特性角ACB为直角,所以三角形ACB为直角三角形O为AB中点,所以OD/BC=AO/AB=1/2所以OD=3CM
根据上下题意,您的题目中有个错误:弦DA,BA的延长线相交于点P应该是:弦DA,BC的延长线相交于点P.证明如下:连结AC.∵AB是直径,∴AC⊥CB.∵BC=PC,∴RT⊿ACB≌RT⊿ACP(RT
证明如下:连结AC.∵AB是直径,∴AC⊥CB.∵BC=PC,∴RT⊿ACB≌RT⊿ACP(RT⊿即直角三角形).∴AB=AP.且∠P=∠B.又∵∠D=∠B(同弧所对圆周角相等)∴∠P=∠D,故⊿PC
连结AD,则可以证明AD垂直平分线段BC.1、三角形ACD为直角三角形,且角C=70°,则角CAD=20°,所以角A=20°×2=40°;2、AC=AB,正确;3、弧AB与弧BE明显不等;4、A、B、
∵AB⊥CD,AB为直径,∴CE=1/2CD=3,连接OC,则OC=1/2AB=5,∴OE=√(OC²-CE²)=4,∴BC=√(BE²+CE²)=3√10,A
连接AEAB为直径》》AEB=90AB=AC》》BAE=CAEBD为切线》》CBD=BAECBD=1/2*cab望采纳!谢谢!
延长DE交圆于点F,根据垂径定理得DF=2AD,又已知BC=2AD,所以,DF=BC,BC=DF,所以BC=2DE.
(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC
因为AB是圆O的直径所以角ADB=90度所以AD是三角形ABC的垂线因为AB=AC所以三角形ABC是等腰三角形所以AD是等腰三角形ABC的中垂线所以CD=BD=1/2BC由圆幂定理得:CE*AC=CD
解题思路:本题主要根据构建直角三角形,求证三角形相似,得到对应线段成比例。解题过程:最终答案:略