如图一 在等边三角形abc中,点d,e是bc,ac的中点把三角形cde,绕点c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:57:48
∠BQM=60°.图B中也成立.主要是找到一对全等三角形△ABM和△BCN,就知道∠BNC=∠BMQ,就可以证明△BQM和△BNC相似,就可以推出∠BQM等于60°
2.∠B+∠1+∠2=90°∠1=∠2=∠B∴都等于30°∴2CE=AC2AC=AB∴AB=4CE
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
1证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ACB=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌ACE∴∠CAE=∠B=60°∴∠CAE=∠ACB∴AE‖BC2.∵△AB
因为没法画图,根据我的思路写一下吧:∠DCB=60度-∠ACD,∠ECA=60度-∠ACD,所以∠DCB=∠ECA,又因为两个三角形都是等边三角形,所以:BC=AC,DC=EC可证得:△DCB≌△EC
1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)
∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌⊿CFE≌
证明:如图所示∵△ADE是等边三角形∴∠ADE=60°又∵△ABC是等边三角形∴∠BAC=60°又∵AD是△ABC的中线∴∠DAC=30°=∠DAF∴∠AFD=90°∴AC⊥DE∵△ADE是等边三角形
证明:CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,AB=AC,∠B=∠1,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DA
解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced
三角形ABC等边,于是AB=BC,∠ABD=∠BCE=60°,又BD=CE,所以△ABD≌△BCE(SAS),∠BAD=∠CBE,所以∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°
ab=bc=ac=2根号3,cd=de=cd=3,ad=db=根号3S.aecb=S△bde+S△edc+S△adc=1/2*db*de*sin30+1/2*3*3/2根号3+1/2根号3*2根号3=
证明:∵等边三角形ABC∴AB=AC,∠BAC=∠ACB=60∵AE=CF∴△ABE≌△CAF(SAS)∴AF=BE,∠ABE=∠CAF∴∠BOF=∠ABE+∠BAF=∠CAF+∠BAF=∠BAC=6
利用边角边证明三角形BEC全等于三角形ADC,得DC=EC,角DCE=60度,故三角形CDE为等边三角形,从而角ADC=角DEC=角CDE=60度,所以CD平分角ADE!手机打字,很麻烦!
c点坐标(3,3根号3),设y=k/x,带入得k,求出解析式.向上平移三角形就是当横坐标为6时,反比例函数的值,带入上式求得的解析式,求出的y就是n
因为是正三角形所以六边形是正六边形将六边形分成6个等边三角形(把所有对角线连起来)六边形边长为1,所以正三角形边长为1一个三角形面积:/2=根号3/26个就是3倍根号3答案就是3倍根号3(分数、根号不
证明:∵ΔABE与ΔACD是等边三角形,∴AE=AB,AC=AD,∠AB=∠CAD=60°,∴∠EAB+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴ΔAEC≌ΔABD.再问:第二部那是角什么
解题思路:本题主要根据全等三角形的性质、等边三角形的判定进行解答解题过程: