如图①,在Rt∆ABC中,角ACB=90,AC=8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 01:32:52
如图①,在Rt∆ABC中,角ACB=90,AC=8
如图 在rt三角形abc中 角acb等于90度 a=5 c=13 求b

∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/

如图在Rt三角形ABC中角A=90度,以BC边上的一点O

答:ab/(a+b)解析:连接OF,可证△BOF∽△BCA,OF:AC=BF:AB,其中OF=半径r,BF=a-r,解得r=ab/(a+b)

已知,如图,在RT三角形ABC中,角ABC=90,

题目中AO=x,应改为AP=x设OB=OE=OD=R在RT三角形AOD中,AO^2=OD^2+AD^2(1+R)^2=R^2+4R=3/2AO=1+R=5/2AB=AO+BO=4如AP=AD,则x=A

一道纠结的数学题例13.如图在Rt△ABC中,∠A

∵CM是斜边上的中线∴CM=AM=DM=BM若CD是BM的垂直平分线成立则必有CM=BC故当且仅当BC=CM=(1/2)AB时,CD是BM的垂直平分线此时∠A=30°

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

已知:如图在RT△ABC中,

过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角

如图 在rt三角形abc中,角c等于45° 如图,在rt三角形abc中,角c等于45°,角cab的平

如图,在Rt三角形abc中,角c等于90度,角cab,角abc的角平分线ad,bd交与点o,求角adb的度数∵∠C=90°,∴∠BAC+∠ABC=90°,∵AD、BD分别平分∠BAC和∠ABC,∴∠B

在线求指导:如图,在Rt△ABC中,

(1)证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,,

【二次函数】已知,如图在Rt△ABC中

这不难(1)∵a,b是方程x^2-(m-1)x+m+4=0的两根∴a+b=m-1①a*b=m+4②∴AB2=52=a2+b2=(a+b)2-2ab=(m-1)2-2(m+4)解得m1=6m2=-2(∵

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

已知,如图,在RT三角形ABC中,

求证啥东西?麻烦采纳,谢谢!

...如图 在Rt△abc中,角A=90度,AB=3cm,AC=4cm

令EF与AC交于点Q;DF与BC交于点M,与AC交于点N由转动得CP=BP=3,PF=CF=2,直角三角形CPQ中PQ:CP=3:4,所以PQ=1.5,FQ=0.5S=三角形PFM-FQN=CPQ-F

已知:如图在Rt三角形ABC中, . 帮帮忙 ~

连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45

如图,在Rt△ABC中,

(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,

如图,在rt三角形abc中,角bac等于90度,ac等于2a

解题思路:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.解题过程:附件

如图,在Rt三角形ABC中,角ABC=30度,

△ABF是由△ABC对折的所以角ACB=角F=60度角BAC=角BAF=90度-60度=30度那么△AFC是等边三角形(AB是中线)所以FC=BC=AD同理可证△ACD是等边三角形(ED是中线)BC=

如图,在Rt三角形ABC中,角ABC等于90度,CD垂直于AB,

相等,因为共圆弧对应角相等,即角DFE=角BCD,角BCD=角BAC.再问:是要求相似三角形吗再答:不需要。

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的