如图⊙O内切于等腰△ABC,AB=AC=5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:07:09
如图⊙O内切于等腰△ABC,AB=AC=5
如图,△ABC内接于⊙O,AD是△ABC的高,AD的延长线交⊙O于点G,AE是⊙O的直径。(1)若AB=6,AC=5,A

解题思路:根据题意,由圆的性质和三角形全等的知识整理,分析可以求得解题过程:

如图,已知△ABC内接于圆O,∠CBD=∠A,判断BD于圆O的位置关系,并说明理由

BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

直线和圆:如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.

连接OB∵∠A=30°∴∠BOC=60°∵OB=OC∴∠OBC=60°∵∠BCD=30°∴∠D=30°∴∠OCD=180°-60°-30°=90°∴CD与⊙O相切阴影的面积=S△OCD-OCD的面积∵

(2010•烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①A

∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,弧AE=弧BE=12弧AEB;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选B.

如图,AH⊥BC,AH为圆G的直径,O为圆O的圆心.圆O与圆G内切于A点,△ABC与圆O 交BC两点.

90度证明:因为.圆O与圆G内切于A点,OA是圆O的半径,OH是圆G的直径所以OA,OH在一条直线上,即延长OH交圆O与I点,AI为圆O的直径因为AH⊥BC所以AI⊥BC且平分BC所以三角形ABC为等

已知:如图,△ABC内接于⊙O,点D在半径OB延长线上,∠BCD=∠A=30°.

(1)直线CD与⊙O相切.理由如下:如图,∵∠A=30°,∴∠COB=2∠A=60°.又∵OC=OB,∴△OBC是等边三角形,∴∠OCB=60°.又∵∠BCD=30°,∴∠OCD=∠OCB+∠BCD=

如图,△ABC内接于⊙O,高AD,BE相交于点H,延长AD交△ABC的外接圆于点G,

(1)连接BG,根据同一弧所对应的圆周角相等,可推出∠BGA=∠ACB再看△AHE和△ACD,共用∠DAC,而且∠BEC和∠ADC都是直角则△AHE∽△ACD,推出∠AHE=∠ACB,根据之前∠BGA

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

(2014•吴江市模拟)如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交底边BC于D.

(1)证明:连接AD.∵AB为⊙O的直径,∴AD⊥BC,又AB=AC,∴BD=CD;(2)DE为⊙O的切线.理由如下:连接OD.∵OA=OB,BD=CD,∴OD是△ABC的中位线,∴OD∥AC.在直角

(2008•白下区二模)如图⊙O内切于正△ABC,正△DEF内接于⊙O,则S△DEF:S△ABC等于(  )

连接OA,OB,OM,∵⊙O内切于正△ABC,正△DEF内接于⊙O,∴点D在OA上,点E在OB上,∴△ABC∽△DEF,OM⊥AB,∠AOB=120°,∴∠AOM=12∠AOB=60°,∠AMO=90

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O

1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈

已知如图,等腰△ABC内接于⊙O,∠B=∠ACB=30°,弦AD交BC于E,AE=2,ED=4,则⊙O的半径为 ___

连接OA,OC,AO交BC于点F,则OA=OC,∠B=∠C,∴AB=AC,由圆周角定理知,∠O=2∠D=60°,所以等腰△OAC是等边三角形,有AB=AC=OA,∵∠B=∠C,∴AE⊥BC∵AB=AC

已知如图,点A,P,B在⊙O上,∠APB=90°,PC平分∠APB,交⊙O于点C.求证:△ABC为等腰直角三角形.

证明:由∠APB=90°得AB为直径,∴∠ACB=90°.∵PC平分∠APB,交⊙O于点C.∴∠CPA=∠CPB.由同圆或等圆中圆周角相等则弦也相等,∴AC=BC,∴△ABC为等腰直角三角形.

如图,等腰△ABC的顶角∠A=36°.⊙O和底边BC相切于BC的中点D,并与两腰相交于E、F、G、H四点,其中点G、F分

证明:连结DF、DG,∵G、F分别是两腰AB、AC的中点.D是等腰三角形ABC底边的中线,∴GD∥AC,GD=AF=12AC,DF∥AB,DF=AG=12AB,∴四边形AFDG是平行四边形,∵AB=A

如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,若∠MAC=∠ABC.

(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线.(2)①证明:∵D是弧AC的中点,∴∠

如图,等腰△ABC内接于⊙O,BA=CA,弦CD平分∠ACB,交AB于点H,过点B作AD的平行线分别交AC,DC于点E,

证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCD,∵∠BCD=∠DAB,∴∠ACD=∠DAB,∴BE∥AD,∴∠EBA=∠DAB,∴∠ACD=∠ABE,∵AB=AC,∴∠ACB=∠ABC,∴∠FC

如图:等腰△ABC,以腰AB为直径作⊙O交底边BC于P,PE⊥AC,垂足为E.

证明:连接OP,∵AB是⊙O的直径,∴∠APB=90°,∵AB=AC,∴BP=CP,∵OB=OA,∴OP∥AC,∵PE⊥AC,∴OP⊥PE,∵PO是半径,∴PE是⊙O的切线.