如图∠MON=90,矩形ABCD的顶点A,B分别在OM,MN上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:53:56
如图∠MON=90,矩形ABCD的顶点A,B分别在OM,MN上
如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上

根据直角三角形斜边上的中线等于斜边的一半,取AB中点E时,OE=1/2AB=1(是定长)又∵ED=√2(也是定长)∴OD≤OE+DE,即最大值=OE+DE(三点共线)=1+√2

如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=45°;四边形DEFG为矩形

(1)∵∠C=90°∠A=45°∠C+∠A+∠ABC=180°∴∠ABC=45°∴AC=CB∵BC=2cm∴AC=2cm

如图,∠MON=90o,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON上,点B是ON上的任意一点,在

(1)△AOB≌△ADF(SAS)∴∠ADF=∠AOB=90°(2)过E作EG⊥FC交FC于G,同理可证△FGE≌△ADF,∴FG=AD=DC,FD=GE,∵FG=FD+DG,DC=DG+GC,∴FD

如图,∠AOB=90度∠BOC=30度 OM平分∠AOC ON平分∠BOC,①∠mon=②∠AOB=α 求∠MON的度数

1.∵∠AOC=∠AOB+∠BOC=120°∴∠MOC=∠AOC/2=60°∴∠MOB=∠MOC-∠BOC=60°-30°=30°又∵∠BON=∠BOC/2=15°∴∠MON=∠MOB+∠BON=45

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上 上运动,矩

如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1,DE=根号下AD2+AE2=根号

如图,在一块三角形区域ABC中,∠C=90°,边AB=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计

勾股定理,AC等于根号下8的平方-6的平方,等于2倍根号7再答:高h等于AC*BC除以AB,等于6*2被根号7除以8,等于3/2倍根号7再问:第二问呢再答:没草稿纸😰😰

如图在△abc中,∠AcB=90°,Ac=4,Bc=3 ,矩形cDEF中,cD=4/3,cF=1

由于没说矩形的具体位置,可以用特殊代替一般的方法,转动矩形,假设cf边与ac重合或者cd边与bc重合,这样算就可以得出两种情况结果都为250/9.不知对不对,我是个学渣再问:你的答案是正确的,请你把答

如图,∠MON=90&ord如图,∠MON=90º,在∠MON的内部有一个正方形AOCD,点A、C分别在射线O

.(1)证明:∵正方形AOCD和正方形AB1C1D1∴AO=AD,AB1=AD1∠B1AD1=∠OAD=∠AOC=90°∴∠OAB1+∠B1AD=∠DAD1+∠B1AD=90°∴∠OAB1=∠DAD1

如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM,ON上,当点B在边ON上运动时,点A随之在边OM上运动,

同2012济南题.OD最小为AD的长,这不用解析.最大:在AB上取点E,做出一个三角形ODE,则OD小天OE+ED,而特殊点是E在AB中点,OE=AB一半=4,则勾股出DE=5,所以OD最大为9.

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形A

取AB中点E,在RTΔOAB中,OE=1/2AB=1,连接DE,DE=√(AD^2+AE^2)=√2,由ΔADE可知:OD≤OE+DE=1+√2,当O、E、D共线时,OD最大=1+√2.

如图,∠MON=90°,矩形ABCD的顶点A、B分别在OM、ON上,当B在边ON上运动时,A随之在边OM上运动,矩形AB

如上图,取AB中点E连接OE、DE,     OE是直角三角形AOB斜边上的中线,     &nbs

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形A

如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1,DE=AD2+AE2=12+12

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,AB=4,BC=1.当点B在边ON上运动时,点A随

如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=4,BC=1,∴OE=AE=12AB=2,DE=AD2+AE2=5,∴OD

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形AB

如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD=BC=1,∴DE=AD2+AE2=12+12=2,根据三角

如图已知角AOB=90度OM平分角AOC,ON平分角BOC,则角MON=( ),角MON的补角=( )

图呐……∠MON=45°(OC在∠AOB内)或90°(∠AOB∠BOC互补)补角:135°或90°∠MON=∠MOC+∠NOC=二分之一(∠AOC+∠BOC)=二分之一90°=45°(OC在∠AOB内

如图 如图,已知∠MON=90°,点A,B分别在射线OM,ON上移动,

∠C=∠DBC-∠BAC=1/2(∠DBO-∠BAO)=1/2(180°-∠OBA-∠BAO)=1/2(180°-90°)=45°所以大小不变再问:为什么是=1/2(∠DBO-∠BAO)再答:DC,A

阅读下面短文:如图(1)△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端

1.=2.1个,形如aefb3.3个,形如aefb4.通过大量试验证实,两数乘积相同时,两数差越大,其两数和越大短边为宽(或长)的周长最长,因为是同一个三角形,所以面积相同,也就是说,一边越长,周长越

如图,∠MON=90°,AP平分∠MAB,BP平分∠ABN.

(1)∵∠BAM是△AOB的外角∴∠BAM=∠AOB+∠ABO∵∠ABN是△AOB的外角∴∠ABN=∠AOB+∠BAO∴∠BAM+∠ABN=∠AOB+∠ABO+∠AOB+∠BAO=(∠AOB+∠ABO

已知,如图,∠MON=90°,点A,B分别在射线ON,OM上移动,

/>∠C的大小保持不变.理由:∵∠ABN=90°+∠OAB,AC平分∠OAB,BD平分∠ABN,∴∠ABD=12∠ABN=12(90°+∠OAB)=45°+12∠OAB,即∠ABD=45°+∠CAB,