如图p为圆o外一点pa pb分别切圆于ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:17:58
如图p为圆o外一点pa pb分别切圆于ab
如图,p为圆O外一点,直线op交圆o与点b,c.过点p作圆o的切线

PA比PB=3比2设比值是x,有PA=3x,PB=2x在RT三角形OPA中,OA=r,AP=3x,OP=r+2x所以有r²+(3x)²=(r+2x)²r²+9x

如图,P为圆O外一点,直线OP交圆O于点B,C,过点P作圆O的切线PA,A为切点,已知PA/PB=3/2,求tan角PA

辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB

如图,由圆O外一点P向圆O引两条切线,切点分别为A.B,过点A做圆的直径AC,连接CB,求证CB‖OP

∵∠AOB=∠BOC+∠COB,∠BOC=∠COB∴∠AOB=1/2∠CBORT⊿AOP,RT⊿BOP中∵OP=OP,OA=OB∴RT⊿AOP≌RT⊿BOP∴∠AOP=∠BOP∵∠AOB=∠AOP+∠

如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

如图,点p为圆o外一点,自点p向圆o引切线pa,pb,切点为a,b,cd切圆o于点e,交pa,pb于点c,d,若pa等于

连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

如图,已知ab是圆o的直径,p为圆o外一点,P为圆O外一点,且OP平行BC,角P=角BAC

设OP和AC交D因为知道角P=角BAC且角POA=CBA所以角OAP=90所以可以算出AP的值而且AC垂直OP说以可以算出AD的值(面积法等)且OD是AC中垂线ADX2=AC

如图,从圆O外一点A作圆O的切线AB,AC,切点分别为B,C,

如下:1.连接BC,与AO交于E点.证明三角形ABO和ACO全等,继而证明ABE和ACE全等因为BE=CE,BO=OD,所以CD||EO,即CD||AO(第一小题也可以用角的方法证明平行)2.证明三角

如图,⊙O的半径为5cm,P是⊙O外一点,OP=8cm,以P为圆心作一个圆与⊙O外切,这个圆的半径是

(1)外切圆半径3cm,内切圆半径13cm.(2)⊙B的半径的比较6cm或10cm.

如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP

设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,已知P为圆O外一点,PA.PB分别切圆O于A,B,OP与AB相交与点M,C为AB弧上一点,试说明角OPC=角OCM

解题要点:连接OA因为PA、PB是⊙O的切线所以OA⊥PA,AB⊥OP所以可证△OAM∽△OPA所以OA/OP=OM/OA由OA=OC得OC/OP=OM/OC而∠COP=∠MOC所以△POC∽△COM

已知:如图,P是圆O外一点,PA、PB分别切圆O于A、B,连OP,交圆O于C,连AC、BC,D是优弧AB上一点,∠ADC

连结CE,BD,∵PA、PB分别切圆O于A、B,∴弧AC=弧BC∴∠CDB=∠ADC=30°,又∵∠EFD=∠BFD=Rt∠,DF=DF∴△BFD≌△EFD∴EF=BF=1/2BE=2,BD=ED在R

如图,P是圆O外一点,求作:过点P作圆O的切线

连接圆心和P点,用尺规画出这一线段的中点,以这条线段的中点为圆心,这条线段的一半长为半径作圆,辅助圆与已知圆的交点就是切点,然后连接就可以了

如图,以圆O外一点P引圆O的切线PA,PB,切点分别为A,B,Q为劣弧AB上一点,过Q做圆O的切线交PA,PB于E,F,

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

如图,PA,PB分别切圆O与A、B两点,C为劣弧AB上一点,∠P=50°,∠ACB=____.

∠AOB=360-90-90-∠P=130(任意四边形的内角和是360)因为∠BCA所对的圆心角=360-∠AOB则∠BCA=(360-∠AOB)/2=(360-130)/2=115

1.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D,再作⊙O的切线PE,E为切点,连结CE,DE,已知AB=

一,由切割线定理得到:AE²=PA*PB,AE=√[2(2+3)]=√10.二,由切割线定理得到:PE²=PC*PD=PC(PC+CD),PC=√14-2【另一值已

如图,在圆o的直径上取一点p,以p为圆心,以ap为半径作圆p,过a点的两直线分别与圆o,圆p交于c

我正在解答您的问题,请稍候.再问:再答:如图,过点A作圆O的切线AM,则OA⊥AM,即PA⊥AM,∴AM是圆P的切线∴∠1=∠D(弦切角定理)同理∠1=∠EFA,∴∠D=∠EFA,∴EF∥CD&nbs