如图P为△ABC的内心,延AP
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:08:18
从B向AC作垂线段BP,交AC于P,设AP=x,则CP=5-x,在Rt△ABP中,BP2=AB2-AP2,在Rt△BCP中,BP2=BC2-CP2,∴AB2-AP2=BC2-CP2,∴52-x2=62
证明:过点A作AM垂直BC与点M,以点P在点M的左边为例所以AC的平方=AM的平方+MC的平方AP的平方=AM的平方+PM的平方所以AB的平方-AP的平方=MC的平方-MP的平方因为△ABC中,AB=
勾股定理过A做AM⊥BC于M左式=AM平方+BM平方-(AM平方+PM平方)=(BM+PM)(BM-PM)因为AB=AC所以BM=CM上式=PB*PC
本题可通过构建直角三角形求解,作BC边上的高AF;可在Rt△ABF和Rt△APF中,分别用勾股定理表示出AF的长,联立两式即可求得所证的结论.-----------------------------
∵在等腰三角形BCE中,BE=BC=3,角CBE=45°∴等腰三角形BCE的腰上的高h,h^2=9,h=2/3√2又∵FM+FN=h∴FM+FN=2/3√2(2)证明:设等边三角形的边为a,边上的高为
如图,设AM与BE交于点G∵AP⊥AM,∴∠MAP=90°∵BE为AC边上的高,∴∠AEB=90°∴∠MAP=∠AEB又∵∠AGP公用∴△AGE相似于△APM∴∠MAC=∠BPA
这个题用相似(1)角ACB=60度,角APC=角ABC=60度,角PAC=角CAE所以三角形PAC相似与三角形CAE所以PA:AC=AC:AE,即AC^2=PA*AE,AC=AB(2)角BPE=角BC
延长BP与AC相交于D点因为∠BAP=∠PAC,∠APB=∠APD=90°,AP=AP所以△ABP≌△APD则AB=AD=10DC=4因为BP=PD,BM=MC所以PM为△BDC的中位线所以PM=1/
图.应该是过点P作PN垂直于BC,PM垂直于AB延长线,PK垂直于AC因为BF,CG分别平分∠MBC,∠KCB所以PM=PN,PK=PN所以PM=PK所以AP平分∠BAC
证明:过点P分别作PG垂直OA于G,PH垂直BC于H,PM垂直AE于M因为角PGA=角PMA=90度BP是三角形ABC的外角平分线所以PG=PH因CP是三角形ABC的外角平分线所以PH=PM所以PG=
过P作PD⊥AB交AB的延长线于D,作PE⊥BC交BC于E,作PF⊥AC交AC的延长线于F.∵P在∠CBD的平分线上,∴PD=PE.∵P在∠BCF的平分线上,∴PF=PE.由PD=PE、PF=PE,得
证明:设P为BC上任意一点,作AD⊥BC根据勾股定理得:AP^2=AD^2+BD^2因为AB=AD,AD⊥BC所以根据“三线合一”性质得BD=CD所以PB*PC=(BD-PD)(CD+BD)=(BD-
在CF上截取CQ′=BP,∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠ACB=60°,∴∠ACE=120°,∵CF平分∠ACE,∴∠ACQ=60°=∠B,在△ABP与△ACQ′中,AB=AC∠
该命题为假命题如果ABC为等腰直角三角形,角A=90度则MN=AP
依题意三角形为等腰的,那么三线合一,AP⊥BC,则在三角形ABP中,AB²-AP²=BP²又因为BP=CP,所以BP*CP=AB²-AP²
(1)∵△ABE和△APQ是等边三角形,∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,∴∠BAE-∠PAE=∠PAQ-∠PAE,∴∠BAP=∠EAQ.在△ABP和△AEQ中
延长BP交AC于F.由三角形外角定理,有:∠APF=∠BAP+∠ABP,又∠APF=∠EPB,∠BAP=∠CAE,∠ABP=∠CBP,∴∠EPB=∠CAE+∠CBP,而A、C、E、B共圆,∴∠CAE=
可以将三角形绕顶点A逆时针选60度,使得AB与AC边重合,p点相应点为P',则可看到得到三角形pP'C;pP'=3;(可以知道角pAP'为等边三角形)P'C=pB=4;pC=5;即可知pP'与P'C垂
PM=2延长BP,交AC于D.由AP平分∠BAC,且BP⊥AP可得ABP与ADP全等.所以AD=10,CD=4P、M都是中点,PM平行DCPM=0.5DC=2