如图MN为圆O的直径,MN=2,点A在圆O上,角AON=60度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:47:26
首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这
作OG⊥MN与G,OG=√(OM^2-MG^2)=3,△OGH∽△AFH,则h1/OG= HA/ OH,△OGH∽△BEH,则h2/OG= HB /OH,所以h
设BC与OA的交点为D,连接ND∵BC∥MN,C是AM中点∴D为OA的中点∴OD=1/2OA=1/2OB∴∠OBN=30°∴∠BON=30°∵OB=ON∴∠OBN=75°∴∠NBC=30°+75°=1
连结BC,BC与EF的交点为P时,PA+PC最短连结OA,OC,由勾股定理得OE=3,OF=4∴EF=7∵AB‖CD∴BE/CF=EP/PF4/3=EP/PFEP+PF=7∴EP=4,PF=3∴BP=
作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.此时PA+PB最小,且等于AC的长.连接OA,OC,根据题意得弧AN的度数是60°,则弧BN的度数是30°,根据垂径定理得弧CN的
(1)由“平行线分线段成比例”可得D为BC中点.所以AO垂直平分BC,四边形ABOC为菱形(2)题目好像错了
证明:△OEP全等于△OFPPE=PF由垂径定理得MP=NP∴ME=NF由垂径定理得弧AM=弧AN△OEP全等于△OFP∴∠COA=∠DOA∴弧AC=弧AD∴弧MC=弧ND
证明:(1)连结OM、ON.则OM=ON有oe=of,得∠peo=∠pfo,又oa⊥MN,所以,三角形oep全等三角形ofp所以pe=pf又mp=np得me=nf(2)有(1)得me=nf又oe=of
h1+h2=圆心O到MN的距离的2倍,利用垂径定理,得到这个距离是3,则h1+h2=6再问:“h1+h2=圆心O到MN的距离的2倍”这是为什么?再答:可以将弦MN平移到其一个顶点与点A(或者B)重合。
两种极端情形一种是MN和AB共一个顶点(随便共哪个)一种是MN和AB垂直原始就是6
(1)∵MN是⊙O的直径,点A是弧MN的中点,∴∠AOM=14×360°=90°,∴∠ACO+∠CAO=90°,∵∠ACO=2∠CAO,∴3∠CAO=90°,解得∠CAO=30°;(2)过点O作OD⊥
理由是:过O作OE⊥AB于E,OF⊥CD于F,连接OB、OD,\x0d∵∠APM=∠CPM,∠APM=∠BPN,∠CPM=∠DPN,\x0d∴∠BPN=∠DPN,\x0d∵OE⊥AB,OF⊥CD,\x
由题意可知,角AON=60度,角BON=30度.以MN为对称轴,B的对称点B',连接BB',如图,连接AB',B'O.P是直径MN上的一个动点,则点PA+PB的最小值就
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB
1.作B点关于AN的对称点C,C点在圆上,所以AC=PA+PB的最小值,AC所对的圆心角是90°,半径=1,所以AC=根号22.3圈3.题意应该是把圆周分成1:3,若是面积的话就很麻烦了,所以圆周角是
7倍根号2再问:谢谢,可否讲解一下呢?再答:连接OA,OC.作CG垂直于AB,用勾股定理算得EF=OE=OF=7,CG=7,在直角三角形CGB中BC=7倍根号2再答:对了!CE=CF=3!!!再答:懂
作B关于MN的对称点F,连OB,OA,根据勾股定理得:OD=8,OC=6,CD=14,连AF与MN相交于一点即为符合题意的P点,过F作MN的平等线交AC的延长线于H,则直角三角形AFH中,FH=DC=
设AB、NM交于H,作OD⊥MN于D,连接OM.∵AB是⊙O的直径,且AB=10,弦MN的长为8,∴DN=DM=4,∵MO=5,∴OD=3.∵BE⊥MN,AF⊥MN,OD⊥MN,∴BE∥OD∥AF,∴
1)∵BC∥MN,AO⊥MN,∴AO⊥BC.∵D为AO的中点∴AB=BO,AC=CO.∵OB=OC(都是半径)∴AB=BO=AC=CO2)∵∠BOM=∠OBN+∠ONB而OB=ON,∴∠OBN=∠ON