如图e是正方形abcd边上cd一点链接be将正方形折叠
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:53:41
1.∵ABCD是正方形∴BC=DC又∵∠ECB=∠FCD=90°CE=CF所以△BEC≌△DFC(SAS)2.∵CE=CF∴∠CEF=∠CFE=45°又∵△BEC≌△DFC∠BEC=60°∴∠EBC=
1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度
证明:∵四边形ABCD是正方形,∴BC=DC,∠BCD=∠DCF=90°,在△BCE和△DCF中,∵BC=DC∠BCD=∠DCF=90°CE=CF,∴△BCE≌△DCF(SAS),∴BE=DF.
1可以设正方形边长为a,BE=b,所以易得EG=2a-b.HG=√3a.所以要证2a-b=√3a两边平方得a2+b2=4ab设正三角形边长c.a2+b2=c2.由又三角形ECF知2(a-b)2=c2所
如图,∵∠DAE+∠EAB=∠P+∠EAB=90°,∴∠DAE=∠P,又∵各个垂直,∴图中所有直角三角形相似.(1)设AD=6,∵DE=1/3DC=1/3AD=2,∴AE=2根号10,AH=根号10,
你的图不是很清楚若设BE与DF交与MS△BMC=S△DFC=1/2*30*15=225平方厘米因为E,F分别为DC,BC中点所以S△MFB=S△FMC=S△ECM=S△DEM所以S△BMF=1/3S△
由题意可知:当动点P从A运动到B时,S△ABE=12×1×1=12,当动点P从B运动到C时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<
垂直平移EG使A,E重合,平移FH使F,C重合,证明三角形CHA和三角形AGB全等,推出角CHA等于角AGB则可证明垂直
延长AF交BC的延长线于H,设AF、BE交于G由正方形和中点的条件得:EF/CF=DE/BC=1/2所以AE/CH=EF/CF=1/2所以CH=BC所以AE=BH/2所以EG/GB=AE/BH=1/4
1)证明:∵正方形ABCD,∴AD=DC=AB=BC,∠C=∠D=∠BAD=90°,AB∥CD,∵AF⊥BE,∴∠AOE=90°,∴∠EAF+∠AEB=90°,∠EAF+∠BAF=90°,∴∠AEB=
由题意的S3=1/2□ABCD-S8-S1S2+S7+S6=1/2□ABCD-S8-S1所以两者面积相等
1、AB=8,由CE/CD=1/2,∴CE=4,即E是DC中点,设BN=x,则CN=8-x,由对称性得:NB=NE=x,在直角△ENC中,由勾股定理得:4²+﹙8-x﹚²=x
三角形BCD与三角形CFE都是腰直角三角形所以角BDC=角ECF=45度,所以BD平行CF△BDF的面积=△BDC+△DEF+△CEF-△BCF设EF=b则有△BDF的面积=1/2*a*a+1/2*(
1)CF=CE=X,BE=4-XS△AEF=S正方形-S△ABE-S△CEF-S△ADF=16-1/2[2*4*(4-X)+X*X]=-x^2/2+4xy=-x^2/2+4x,0
由AE=AF可知ADF和ABE是两个全等三角形,FC=CE=X,所以三角形AEFR的面积Y等于正方形面积减三角形ADE、ABE、FCE的面积,即\x0dY=4*4-2*4*(4-x)/2-x*x/2
(1)当CF=4时,由切线的判定定理可知,AD,BC均是半圆的切线,故FB=FM,AE=EM.设AE=EM=X,过E作BC边上的高,由勾股定理可列:(X-2)^2+6^2=(2+X)^2解得:X=4,
(1)证明:∵正方形ABCD,∴AD=DC=AB=BC,∠C=∠D=∠BAD=90°,AB∥CD,∵AF⊥BE,∴∠AOE=90°,∴∠EAF+∠AEB=90°,∠EAF+∠BAF=90°,∴∠AEB
小题1:答:△ABC≌△ADC,△ABF≌△ADF,△BCF≌△DCF;小题2:答:AE⊥DF。可证△BCF≌△DCF得∠CBF=∠CDF,再证△ADE≌△BCE得∠DAE=∠CBE,故∠
答相等的解S3+S1+S6=SABF=1/2*AB*AD=1/2*SABCD(S2+S1)+(S7+S6+S8)=SABE+SDEC=1/2*BE*AB+1/2*EC*AB=1/2*AB*(BE+EC
证明:∵△ADE顺时针旋转90°,得到△ABE′,∴△ADE≌△ABE′,∴AE=AE′,∵∠EAE′=90°.∴∠AEE′=45°,∴∠FEE′=90°-45°=45°=∠AEE′.即EE′平分∠A