如图E是平行四边形ABCD的边CD的中点连结AE并延长交BC的延长线于点F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:15:24
证明:∵ABCD是平行四边形∴AD=BC,AD//BC∵E,F分别是边AD,BC的中点∴ED=½AD,BF=½BC∴ED=BF,且ED//BF∴四边形BFDE是平行四边形∴EB=D
(1)∵EF是平行四边形的中位线∴AD∥EF∥BC,四边形EFBC是平行四边形(一组对边平行且相等)∵AE=FC(中点的意义)∠EAD=∠BCF(同位角相等)AD=BC(平行四边形对边相等)∴△AED
AB//CD所以DF//EB,因为E,F为中点,DC=AB所以DF=EB,所以为平行四边形.可知ADE为等边三角形,所以DE=AE=EB=BF=FD,所以DFBE为棱形,周长为4×2=8
设平行四边形ABCD面积是SSABE=1/4SSADF=1/4SSEFC=1/8SS-(SABE+SADF-SEFC)=72S-(1/4+1/4+1/8)=72S=192平行四边形ABCD面积是192
∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC/2=5
解题思路:四边形解题过程:你好,你的题目吧完整,请补充后,老师再给你解答最终答案:略
(1),因为三角形CDE相似于三角形BME且CD:BM=2:1所以S△CDE:S△BME=(2:1)^2=4:1因为两个三角形相似且对应边之比为2:1,故两三角形高之比为2:1(过E点做CD和BM的垂
虽然没图我自己画了一个以AB为下底的平行四边形过E做EF垂直于AB于F,反向延长交CD与P,由AB‖CD不难发现△EMB∽△ECD而且MB:CD=1:2即△EMB与△ECD的相似比为1:2则他们的高之
∵⊿BEM∽⊿CDM(两角对应相等,两三角形相似)∴BM:CM=BE:CD=1:2S⊿BOD:S⊿COD=1:2S⊿COD=2S⊿BCD/3S⊿BCD=S平行四边形ABCD/2S⊿COD=S平行四边形
∵⊿BEM∽⊿CDM(AA)∴BM:CM=BE:CD=1:2S⊿BOD:S⊿COD=1:2S⊿COD=2S⊿BCD/3S⊿BCD=S平行四边形ABCD/2S⊿COD=S平行四边形ABCD/3S⊿BEM
解题思路:题没有写完整,请在下面补充解题过程:.最终答案:略
点M为AB的中点,则BM=AB/2=DC/2.∵BM∥CD.∴ME/CE=BM/DC=(DC/2)/DC=1/2,则ME/MC=1/3,故S⊿BME=(1/3)S⊿BMC.(同高的三角形面积比等于底之
过F点做DC平行线交EB于点H你想想就会发现有答案了EFHC是平行四边形,对角线互相平分
证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,BC=AD.又∵E、F、G、H分别是平行四边形ABCD的四边中点,∴BE=DG,BF=DH.∴△BEF≌△DGH.
连接AC,取AC的中点M,连接MF、ME∵M、F分别为AC和BC的中点∴MF是△ABC的中位线∴MF=1/2AB同理可得ME=1/2CD当M、E、F共线时,FF=MF+ME=1/2(AB+CD),AB
∵ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADE=∠CBF∵AD=BC,∠ADE=∠CBF,DE=BF∴△ADE≌△CBF(SAS)∴AE=CF
连接AF,EC.有题可知AE=FC,又因为AE//FC,所以四边形AECF为平行四边形,所以AF=EC(平行四边形的对边长相等)
证明:过点E作EM垂直AD于M,DN垂直AE于N所以S三角形ADE=1/2AD*EMS三角形ADE=1/2AE^DN因为四边形ABCD是平行四边形所以S平行四边形=AD*EM所以S三角形ADE=1/2
AD平行且等于DC所以DE平行DF点E,F分别是AD,BC的中点所以DE=DFDE平行且等于DF四边形BFDE是平行四边形