如图bcd依次是线段ae上三点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:08:59
证明:∵AD//BC∴∠ADC+∠BCD=180°∠CDK=1/2∠ADC∠DCK=1/2∠BCD∴∠CDK+∠DCK=1/2(∠ADC+∠BCD)=1/2×180°=90°∠CKD=180°-(∠C
∵四边形ABCD是平行四边形∴AB//CD,AD//BC,∠BAD=∠BCD∵AE平分∠BAD,CF平分∠BCD∴∠BAE=½BAD,∠DCF=½∠BCD∴∠BAE=∠DCF∵AB
根据题意:图中的线段有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,且AE长为8.9cm,BD为3cm,则线段AE上所有线段的长度的总和为:AB+AC+AD+AE+BC+BD+BE+CD
∵四边形ABCD是平行四边形∴AD‖BC,AD=BC,AB=DC∴∠DAE=∠AEB,∠DFC=∠FCB又∵AE\FC分别是角平分线∴∠BAE=∠DAE,∠FCB=∠DCF∴∠BAE=∠AEB,∠DF
证明:∵四边形ABCD是平行四边形∴AB=CD∠B=∠D∠BAD=∠DCB又∵AE,CF分别是∠BAD,∠BCD的平分线∴∠BAE=1/2∠BAD∠DCF=1/2∠DCB∴∠BAE=∠DCF∴△BAE
证明:∵四边形ABCD是平行四边形,∴CE∥AF,且∠DAB=∠DCB,(平行四边形的对角相等)∵AE、CF分别平分∠DAB、∠BCD,∴∠EAF=∠ECF,又∠ECF=∠CFB,(两直线平行,内错角
证明:∵四边形ABCD是平行四边形,∴CE∥AF,且∠DAB=∠DCB,(平行四边形的对角相等)∵AE、CF分别平分∠DAB、∠BCD,∴∠EAF=∠ECF,又∠ECF=∠CFB,(两直线平行,内错角
因为四边形ABCD是平行四边形所以AB=CD∠B=∠D∠BAD=∠BCD又因为∠BAE=1/2∠BAD∠DCF=1/2∠BCD所以∠BAE=∠DCF在△BAE和△DCF中∠B=∠DAB=CD∠BAE=
过M点在ABC作BC的平行线,交AB于E,交AC于F,连接DE,DF,所得平面DEF即为所求
证明:因为.AD平行于BC所以.角CFD=角BCF因为.AE平分角BAD,CF平分角BCD所以.角DAE=2分之1角BAD,角BCF=2分之1角BCD因为.角BAD=角BCD所以.角DAE=角BCF所
证法1:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,AB//CD ∴∠BAE=∠DEA∵AE平分∠DAB∴∠BAE=∠DAE∴∠DAE=∠DEA∴AD=DE同理:BF=BC∴DE=
A——E——B——C—F—D∵E是AB的中点∴AE=BE=1/2AB∵AB=2CD∴AE=BE=CD∵F是CD的中点∴CF=1/2CD∵AE-CF=4∴CD-1/2CD=4∴CD=8∴AB=2CD=1
【是AE,CF分别是∠DAB,∠BCD的平分线】证明:∵四边形ABCD是平行四边形∴AD//BC,∠BAD=∠BCD(平行四边形对边平行,对角相等)∵AE,CF分别是∠DAB,∠BCD的平分线∴∠1=
因abcd是平行四边形.所以dae=beadfc=bcf.因CF分别是角BAD,角BCD的平分线.所以dae=bea=dfc=bcf.所以ae与cf平行.
证明:∵四边形ABCD是平行四边形,∴CE∥AF,且∠DAB=∠DCB,(平行四边形的对角相等)∵AE、CF分别平分∠DAB、∠BCD,∴∠EAF=∠ECF,又∠ECF=∠CFB,(两直线平行,内错角
AC+CE=AE=8.9cmBC+CD=BD=3cmAB+DE=AE-BD=8.9-3=5.9AD+BE=AB+BD+BD+DE=AB+DE+2BD=5.9+2*3=11.9即以A,B,C,D,E五点
过E做平行线EF平行于AD,即也平行于BC,交AB于F,F为AB中点角DAE=角AEF=角EAF,(平行线)所以EF=AF,而AF=BF,所以EF=BF得角FEB=角FBE=角EBC,(平行线)BE平