如图ae切圆o于点e,AT交圆O于M,线段OE交AT
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:08:26
连接be,bf由性质知,角aeb=角afb=90度△aeb∽△abc故ae/ab=ab/ac,即ae*ac=ab^2同理△afb∽△abd故af/ab=ab/ad,即af*ad=ab^2所以ae乘ac
因为,AE平分∠BAD,所以,∠BAE=30°因为,平行四边形ABCD所以,∠BAD+∠CBA=180所以,∠OAB+∠OBA=90所以,∠AOB=90所以AB=2OB=2,OA=根号3同理OF=根号
(1)因为菱形对角线互相垂直平分,且分割成完全相同的四部分则AE=BO=DO又AE⊥CD则∠DOC=∠AED=90°三角形DOC全等三角形AEC所以AC=DC=AD故三角形ADC为等边三角形∠CAE=
题目不完全吧.我想应该是证明BOE为75°吧.∵∠BAD=90°,AE平分∠BAD∴∠BAE=∠AEB=45°∴AB=BE(等边对等角)又∵∠EAC=15°∴∠BAO=45+15=60°,∠DBC=9
因为ad平行于bc,所以角adb=角dbc,因为ac与ef相交,所以角aoe=foc,因为点o是中点,所以eo=of,ao=oc,在三角形aeo和三角形cfe中,因为ae=fc,ac=oc,eo=of
你的问题呢问题是什么啊
﹙1﹚连接OE,则OE=OA∴∠BAE=∠AEO又∵∠FAE=∠BAE﹙AE平分∠BAF﹚∴∠FAE=∠AEO∴OE∥AD∵DC⊥AF∴DC⊥OE∴CD与圆O相切于点E﹙2﹚∵OE∥AD﹙已证﹚∴OC
连接BC,∵AB是直径,∴BC⊥AE,∵DE=DB,∴DC=DB=1/2BE(直角三角形斜边上中结等线斜边的一半),连接OD、OC,∵OD是切线,∴∠OCD=90°,∵OD=OC,OC=OB,∴ΔOD
(1)∵BM²=CM×MD又∵AB为圆O的直径,弦CD⊥AB∴CM=MD=2∴CD=4(2)∵AB为圆O的直径∴∠ACB=90°∵AE切圆O于点A∴∠EAB=90°又∵∠E=∠E∴△EAB与
因为PA,PB为切线所以PA=PB因为BD⊥PA于点D,AE⊥PB于点E三角形ABP的面积可以表示为二分之一BD*AP或者二分之一AE*BP所以AE=BD因为BD⊥PA,AE⊥PBAB=AB所以三角形
四边形ADCE是菱形.证明:∵MN是AC的垂直平分线,∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO.(ASA)∴AD=CE
用到四点共圆、射影定理及切割线定理,如图所示:
角ADO是直径OA所对的圆周角,所以是90°,即直线OD垂直于AB;连接OB,OB=OA,等腰三角形ABO中,OD是底边垂线,根据三线合一,OD也是中线,AD=BD;因为AD=BD,OD=OD,角AD
证明:∵ABCD是菱形∴∠AOB=90°,AB=AD∵∠AED=90°,AE=OB∴△AOB≌△DEA∴∠ADE=∠BAC=1/2∠BAD∵∠BAD+∠EDA=180°∴∠ADE=60°,∠BAD=1
BE是⊙O的切线.[证明]∵AB是⊙O的直径,∴AC⊥BC,∴BC⊥CE,而D是BE的中点,∴CD=BD.∵OC=OB、OD=OD、CD=BD,∴△OCD≌△OCB,∴∠OCD=∠OBD.∵CD切⊙O
证明:∵DE//AC,AE//DB∴四边形DOAE是平行四边形(两组对边平行的四边形是平行四边形)∵四边形ABCD是矩形∴OA=OD(矩形的对角线相等且互相平分)∴四边形DOAE是菱形(邻边相等的平行
1)等边三角形OFA与OBP全等(俩边长都为半径,加上钝角相等),∠3=∠2,∠2=∠1,所以1=3,所以平行2)连接ap,∠EAP=∠4,∠4=∠1,所以∠EAP=∠1,然后三角形CAP与CFA相似
直角三角形ACD中,AE=AO=OE=OC.O是中点.三角形AOE为正三角形,角CEO=角OCE.角AOE=2倍角OCE.角CAE=60度,其他角都好算啦!
第一个问题:∵BC是直径,∴AB⊥AC,又AD⊥BC,∴∠BAE=∠ACB.[同是∠ABC的余角]∵弧AB=弧AF,∴AB=AF,∴∠ABE=∠AFE.∵A、B、C、F共
证明:连接OE.CE=CD,则∠CED=∠CDE;又∠CDE=∠ADO.故∠AED=∠ADO;OE=OA,则∠OEA=∠OAD.OC垂直OA,则∠ADO+∠OAD=90度.所以,∠AED+∠OEA=9