如图ad是圆o的直径,以AD为边作平行四边形ABCD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:37:34
证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠
连接oe,af两个相似的直角三角形立现,oc=3,oe=1,算出ec,问题就解决了
(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆
假设直线BC不是圆O的切线作OH垂直于BC于点H,在直线OH上取OE=OA=OD,连BE,CE所以三角形OAB全等于三角形OBE,三角形OCD全等于三角形OCE所以BE+CE=AB+DC>BC与题意矛
很好做的~因为OC‖AD所以∠COB=∠A,∠COD=∠ODA因为OA=OD所以∠A=∠ODA所以∠COB=∠COD于是△COD≌△COB所以∠COD=∠COB=90°,所以DC为圆O的切线
图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=
1、证明:因为AD⊥BC所以∠ACB+∠CDA=90因为AD是直径所以∠AFD=90°所以∠ADF+∠CDA=90°所以∠ACB=∠ADF因为∠ADF=∠AEF(对同弧AF)所以∠AEF=∠ACB2、
如图,AD中点O即半圆的圆心,作辅助线,OE、OC、OF因为E在半圆上,所以OE=OD=2E也在四分之一圆上,所以EC=DC=4加上公共边OC马上我们就可以知道△ODE和△OCE是全等的直角三角形(S
(1)、连接OE.由AB∥DC,AD=BC可得∠A=∠B由于AD为直径,所以DE⊥ABOD=OE所以∠ODE=∠OED∵∠FEB+∠DEF=90°∠OED+∠DEF=90°∴∠FEB=∠OED=∠OD
作AM⊥QE于M,连接DE∵S⊿AEQ=½EQ×AMS⊿ACD=½DC×ADEQ=DC∴S⊿AEQ/S⊿ACD=AM/AD=y∵∠AED=∠ADB=90º∴∠ADE=∠B
证明:连接ED、FD,△ABD与△AED为相似三角形,△ADC与△ADF为相似三角形则有AD/AC=AF/AD,推出AD²=AC.AF,AD/AB=AE/AD,推出AD²=AB.A
解题思路:用圆性质证明解题过程:请把完整的条件写一下。最终答案:略
是求,求证,∠EAF+∠EDF=180°?∵AD为直径.∴∠AED=∠AFD=90°.(直径所对的圆周角为直角)∴∠AED+∠AFD=180°,∠EAF+∠EDF=360°-(∠AED+∠AFD)=1
连接BE∵AE为圆O直径∴∠ABE=90°∵AD为△ABC的高∴∠ADC=90°在△ABE与△ADC中,∠ABE=∠ADC,∠E=∠C(同弧所对的圆周角相等)∴△ABE∽△ADC∴AB/AD=AE/A
(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC
设AB=x△ABE,△EDC,△EBC为Rt三角形△ABE中,AE²+AB²=BE²->9+x²=BE²△EDC中,ED²+CD²
∵AD是直径,∴∠AED=∠AFD=90°,根据四边形AEDF内角和为360°,得∠EAF+∠EDF=180°.⑵β=1/2α.证明:∵BD=PD,AD⊥BP,∴AB=AP,∴∠DAB=∠DAP,∵∠
相等,作图后可得到三角形AoB等于三角形BoA,所以BF等干AD,oD等于oF.因为oB等于oA、所以BD等于AF.因为三角形BDE等于三角形.所以BD等于ED等于EF等于AF.因此AE等于BE
方程的解=(-b+_根号b²-4ac)/2a得X1=根号5+1X2=根号5-1又CH>FCCH=根号5+1FC=根号5-1CH+FC=FH=2根号5.所以FE=EH=根号5.CE=1.又AC
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=