如图ad是圆o的直径,以AD为边作平行四边形ABCD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:37:34
如图ad是圆o的直径,以AD为边作平行四边形ABCD
如图 AB是圆O的直径 C是弧AD的中点…

证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠

如图,在△ABC中,CA=CB,D为AC的中点,AD=2,以AD为直径的O切BC于点E

连接oe,af两个相似的直角三角形立现,oc=3,oe=1,算出ec,问题就解决了

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD

(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆

如图,直角梯形ABCD中,AB//CD,AD⊥DC,AB+DC=BC,以AD为直径作圆O

假设直线BC不是圆O的切线作OH垂直于BC于点H,在直线OH上取OE=OA=OD,连BE,CE所以三角形OAB全等于三角形OBE,三角形OCD全等于三角形OCE所以BE+CE=AB+DC>BC与题意矛

如图AB是圆O的直径 BC是圆O的切线 切点为B OC平行于弦AD

很好做的~因为OC‖AD所以∠COB=∠A,∠COD=∠ODA因为OA=OD所以∠A=∠ODA所以∠COB=∠COD于是△COD≌△COB所以∠COD=∠COB=90°,所以DC为圆O的切线

如图,已知AB是圆O的直径,CD、AB分别是圆O的切线.切点分别为D、B,求证OC平行AD

图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=

如图,△ABC中,AD⊥BC,以AD为直径的圆O交AB于E,交AC于F.

1、证明:因为AD⊥BC所以∠ACB+∠CDA=90因为AD是直径所以∠AFD=90°所以∠ADF+∠CDA=90°所以∠ACB=∠ADF因为∠ADF=∠AEF(对同弧AF)所以∠AEF=∠ACB2、

如图在边长是4的正方形ABCD中,以AD为直径作圆O,以C为圆心,CD长为半径作弧BD,交圆O于正方形内一点E

如图,AD中点O即半圆的圆心,作辅助线,OE、OC、OF因为E在半圆上,所以OE=OD=2E也在四分之一圆上,所以EC=DC=4加上公共边OC马上我们就可以知道△ODE和△OCE是全等的直角三角形(S

已知如图,在梯形ABCD中,AB‖DC,AD=BC,以AD为直径的圆O交AB于点E,圆O的切线EF交BC

(1)、连接OE.由AB∥DC,AD=BC可得∠A=∠B由于AD为直径,所以DE⊥ABOD=OE所以∠ODE=∠OED∵∠FEB+∠DEF=90°∠OED+∠DEF=90°∴∠FEB=∠OED=∠OD

如图1,已知AD是三角形ABC中BC边上的高,以AD为直径的圆O分别交AB、AC于点E、F.(1)求证:AE*AB=AF

作AM⊥QE于M,连接DE∵S⊿AEQ=½EQ×AMS⊿ACD=½DC×ADEQ=DC∴S⊿AEQ/S⊿ACD=AM/AD=y∵∠AED=∠ADB=90º∴∠ADE=∠B

如图,AD是△ABC的边BC上的高,以AD为直径作圆……

证明:连接ED、FD,△ABD与△AED为相似三角形,△ADC与△ADF为相似三角形则有AD/AC=AF/AD,推出AD²=AC.AF,AD/AB=AE/AD,推出AD²=AB.A

如图,已知BC是圆O的直径,G为弧AC的中点,AD⊥BC于点

解题思路:用圆性质证明解题过程:请把完整的条件写一下。最终答案:略

如图,在锐角三角形ABC中,AB>AC,AD垂直于D,以AD为直径的图O分别交AB,AC于E,F

是求,求证,∠EAF+∠EDF=180°?∵AD为直径.∴∠AED=∠AFD=90°.(直径所对的圆周角为直角)∴∠AED+∠AFD=180°,∠EAF+∠EDF=360°-(∠AED+∠AFD)=1

=如图,已知△abc的三个顶点在以o为圆心的圆上,ad是△abc的高,ae是以o为圆心的圆上直径,求证ab×ac=ad×

连接BE∵AE为圆O直径∴∠ABE=90°∵AD为△ABC的高∴∠ADC=90°在△ABE与△ADC中,∠ABE=∠ADC,∠E=∠C(同弧所对的圆周角相等)∴△ABE∽△ADC∴AB/AD=AE/A

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD,OA=r

(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC

如图,在矩形ABCD的AD边上有一点E,以EB为直径做圆O,交BC于F.CE刚好与圆O相切,G是CE的中点.

设AB=x△ABE,△EDC,△EBC为Rt三角形△ABE中,AE²+AB²=BE²->9+x²=BE²△EDC中,ED²+CD²

如图,在锐角三角形ABC中,AB>AC,AD垂直于BC于点D,以AD为直径的圆O

∵AD是直径,∴∠AED=∠AFD=90°,根据四边形AEDF内角和为360°,得∠EAF+∠EDF=180°.⑵β=1/2α.证明:∵BD=PD,AD⊥BP,∴AB=AP,∴∠DAB=∠DAP,∵∠

如图,BC是圆O的直径,P是圆O上的一点,AP是弧BP的中点,AD⊥BC,垂足为D,

相等,作图后可得到三角形AoB等于三角形BoA,所以BF等干AD,oD等于oF.因为oB等于oA、所以BD等于AF.因为三角形BDE等于三角形.所以BD等于ED等于EF等于AF.因此AE等于BE

如图,以O为圆心的两个同心圆中,大圆的直径AD交小圆于M.N

方程的解=(-b+_根号b²-4ac)/2a得X1=根号5+1X2=根号5-1又CH>FCCH=根号5+1FC=根号5-1CH+FC=FH=2根号5.所以FE=EH=根号5.CE=1.又AC

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=